首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395294篇
  免费   18820篇
  国内免费   12270篇
化学   212094篇
晶体学   5813篇
力学   20363篇
综合类   676篇
数学   55594篇
物理学   131844篇
  2022年   3400篇
  2021年   4848篇
  2020年   5791篇
  2019年   5748篇
  2018年   14269篇
  2017年   14846篇
  2016年   12223篇
  2015年   7675篇
  2014年   9422篇
  2013年   16660篇
  2012年   19636篇
  2011年   29405篇
  2010年   19121篇
  2009年   18949篇
  2008年   23961篇
  2007年   26723篇
  2006年   12334篇
  2005年   17302篇
  2004年   12456篇
  2003年   11253篇
  2002年   8844篇
  2001年   8434篇
  2000年   6811篇
  1999年   5557篇
  1998年   4493篇
  1997年   4244篇
  1996年   4277篇
  1995年   3879篇
  1994年   3630篇
  1993年   3228篇
  1992年   3780篇
  1991年   3560篇
  1990年   3379篇
  1989年   3260篇
  1988年   3165篇
  1987年   3129篇
  1986年   2993篇
  1985年   3645篇
  1984年   3595篇
  1983年   2843篇
  1982年   2912篇
  1981年   2863篇
  1980年   2620篇
  1979年   2944篇
  1978年   2958篇
  1977年   2989篇
  1976年   2863篇
  1975年   2600篇
  1974年   2529篇
  1973年   2540篇
排序方式: 共有10000条查询结果,搜索用时 668 毫秒
51.
Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein–protein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors.  相似文献   
52.
Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal–alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5H5)Ru(NCMe)3]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.  相似文献   
53.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
54.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
55.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
56.
In the present research, field-amplified sample injection–CZE (FASI–CZE) coupled with a diode array detector was established to determine trace level sulfa antibiotic. Sulfathiazole, sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxazole, and sulfisoxazole were selected as analytes for the experiments. The background electrolyte solution consisted of 70.0 mmol/L borax and 60.0 mmol/L boric acid (including 10% methanol, pH 9.1). The plug was 2.5 mmol/L borax, which was injected into the capillary at a pressure of 0.5 psi for 5 s. Then the sample was injected into the capillary at an injection voltage of –10 kV for 20 s. The electrophoretic separation was carried out under a voltage of +19 kV. The capillary temperature was maintained at 20˚C throughout the analysis, and six sulfonamides were completely separated within 35 min. Compared with pressure injection-CZE, the sensitivity of FASI-CZE was increased by 6.25–10.0 times, and the LODs were reduced from 0.2–0.5 to 0.02–0.05 μg/mL. The method was applied to the determination of sulfonamides in river water and particulate matter samples. The recoveries were 78.59–106.59%. The intraday and interday precisions were 2.89–7.35% and 2.77–7.09%, respectively. This provides a simpler and faster method for the analysis of sulfa antibiotic residues in environmental samples.  相似文献   
57.
58.
59.
60.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号