首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2634篇
  免费   143篇
  国内免费   5篇
化学   2076篇
晶体学   28篇
力学   58篇
数学   185篇
物理学   435篇
  2023年   16篇
  2022年   22篇
  2021年   70篇
  2020年   69篇
  2019年   71篇
  2018年   46篇
  2017年   36篇
  2016年   111篇
  2015年   74篇
  2014年   114篇
  2013年   186篇
  2012年   236篇
  2011年   255篇
  2010年   139篇
  2009年   121篇
  2008年   194篇
  2007年   178篇
  2006年   159篇
  2005年   111篇
  2004年   103篇
  2003年   75篇
  2002年   87篇
  2001年   42篇
  2000年   49篇
  1999年   23篇
  1998年   16篇
  1997年   20篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   13篇
  1992年   14篇
  1991年   8篇
  1990年   3篇
  1989年   11篇
  1988年   3篇
  1987年   4篇
  1985年   12篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   5篇
  1971年   4篇
  1968年   1篇
  1967年   1篇
排序方式: 共有2782条查询结果,搜索用时 15 毫秒
991.
In the search for photocatalysts that can directly utilize near‐IR (NIR) light, we investigated three oxides Cu3(OH)4SO4 (antlerite), Cu4(OH)6SO4, and Cu2(OH)3Cl by photodecomposing 2,4‐dichlorophenol over them under NIR irradiation and by comparing their electronic structures with that of the known NIR photocatalyst Cu2(OH)PO4. Both Cu3(OH)4SO4 and Cu4(OH)6SO4 are NIR photocatalysts, but Cu2(OH)3Cl is not. Thus, in addition to the presence of two different CuOm and Cu′On polyhedra linked with Cu?O?Cu′ bridges, the presence of acceptor groups (e.g., SO4, PO4) linked to the metal oxygen polyhedra is necessary for NIR photocatalysts.  相似文献   
992.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   
993.
994.
This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.  相似文献   
995.
The device performance of sensitizer‐architecture solar cells based on a CuSbS2 light sensitizer is presented. The device consists of F‐doped SnO2 substrate/TiO2 blocking layer/mesoporous TiO2/CuSbS2/hole‐transporting material/Au electrode. The CuSbS2 was deposited by repeated cycles of spin coating of a Cu‐Sb‐thiourea complex solution and thermal decomposition, followed by annealing in Ar at 500 °C. Poly(2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7(2,1,3‐benzothiadiazole)) (PCPDTBT) was used as the hole‐transporting material. The best‐performing cell exhibited a 3.1 % device efficiency, with a short‐circuit current density of 21.5 mA cm?2, an open‐circuit voltage of 304 mV, and a fill factor of 46.8 %.  相似文献   
996.
We designed and prepared the imidazoline‐2‐thione containing OCl? probes, PIS and NIS , which operate through specific reactions with OCl? that yield corresponding fluorescent imidazolium ions. Importantly, we demonstrated that PIS can be employed to image OCl? generation in macrophages in a co‐culture system. We have also employed two‐photon microscopy and PIS to image OCl? in live cells and tissues, indicating that this probe could have wide biological applications.  相似文献   
997.
The self‐assembly of ZnII ions with 1,3,5‐tris(isonicotinoyloxyethyl)cyanurate produces new topological (42?124)3(43)4 2D metal–organic frameworks (MOFs) with anion‐confining cages. The eclipsed assembly of each 2D MOF by π–π stacking of cyanurate moieties (3.352(5) Å) forms 3D MOFs consisting of nanochannels (10.5 Å). Two of the three anions are confined in each peanut‐type cage, resulting in hydrophobicity of the nanochannels. The hydrophobic nanochannel effectively adsorbs a wide range of fused aromatic hydrocarbons (FAHs) as monomers or dimers, rendering it potentially highly useful as an energy‐transfer material.  相似文献   
998.
Published studies of layered (2D) (100)-oriented hybrid lead-bromide perovskites evidence a correlation between increased inter-octahedral (Pb-Br-Pb) distortions and the appearance of broadband white light emission. However, the impact of distortions within their constituent [PbBr6]4− octahedra has yet to be assessed. Herein, we report two new (100)-oriented 2D Pb-Br perovskites, whose structures display unusually high intra-octahedral distortions, whilst retaining minimal inter-octahedral distortions. Using a combination of temperature-dependent, power-dependent and time-resolved photoluminescence spectroscopic measurements, we show that increased intra-octahedral distortion induces exciton localization processes and leads to formation of multiple photoinduced emissive colour centres. Ultimately, this leads to highly Stokes-shifted, ultrabroad white light emission at room temperature.  相似文献   
999.
Rational engineering and assimilation of diverse chemo- and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal-organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo- and biocatalytic components. This was shown by one-pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]-catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
1000.
Redox mediators (RMs) are considered an effective countermeasure to reduce the large polarization in lithium-oxygen batteries. Nevertheless, achieving sufficient enhancement of the cyclability is limited by the trade-offs of freely mobile RMs, which are beneficial for charge transport but also trigger the shuttling phenomenon. Here, we successfully decoupled the charge-carrying redox property of RMs and shuttling phenomenon by anchoring the RMs in polymer form, where physical RM migration was replaced by charge transfer along polymer chains. Using PTMA (poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate)) as a polymer model system based on the well-known RM tetramethylpiperidinyloxyl (TEMPO), it is demonstrated that PTMA can function as stationary RM, preserving the redox activity of TEMPO. The efficiency of RM-mediated Li2O2 decomposition remains remarkably stable without the consumption of oxidized RMs or degradation of the lithium anode, resulting in an improved performance of the lithium-oxygen cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号