首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1282篇
  免费   41篇
  国内免费   3篇
化学   917篇
晶体学   5篇
力学   53篇
数学   55篇
物理学   296篇
  2024年   1篇
  2023年   7篇
  2022年   8篇
  2021年   41篇
  2020年   32篇
  2019年   30篇
  2018年   19篇
  2017年   15篇
  2016年   35篇
  2015年   37篇
  2014年   56篇
  2013年   97篇
  2012年   94篇
  2011年   105篇
  2010年   67篇
  2009年   59篇
  2008年   81篇
  2007年   83篇
  2006年   74篇
  2005年   67篇
  2004年   57篇
  2003年   44篇
  2002年   50篇
  2001年   34篇
  2000年   28篇
  1999年   16篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   11篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1980年   2篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1326条查询结果,搜索用时 31 毫秒
61.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   
62.
Herein, cobalt (Co)-based metal–organic zeolitic imidazole frameworks (ZIF-67) coupled with g-C3N4 nanosheets synthesized via a simple microwave irradiation method. SEM, TEM and HR-TEM results showed that ZIF-67 were uniformly dispersed on g-C3N4 surfaces and had a rhombic dodecahedron shape. The photocatalytic properties of g-C3N4/ZIF-67 nanocomposite were evaluated by photocatalytic dye degradation of crystal violet (CV), 4-chlorophenol (4-CP) and photocatalytic hydrogen (H2) production. In presence of visible light illumination, the photocatalytic dye results showed that 95% CV degradation and 53% 4-CP degradation within 80 min. The H2 production of the g-C3N4/ZIF-67 composite was 2084 μmol g−1, which is 3.84 folds greater than that of bare g-C3N4 (541 μmol g−1).  相似文献   
63.
We observe laser-induced grain morphology change in silicon nanopillars under a transmission electron microscopy (TEM) environment. We couple the TEM with a near-field scanning optical microscopy pulsed laser processing system. This novel combination enables immediate scrutiny on the grain morphologies that the pulsed laser irradiation produces. We find unusual transformation of the tip of the amorphous or polycrystalline silicon pillar into a single crystalline domain via melt-mediated crystallization. On the basis of the three-dimensional finite difference simulation result and the dark field TEM data, we propose that the creation of the distinct single crystalline tip originates from the dominant grain growth initiated at the apex of the non-planar liquid–solid interface. Our microscopic observation provides a fundamental basis for laser-induced conversion of amorphous nanostructures into coarse-grained crystals.  相似文献   
64.
65.
Decanoic acid self-assembled monolayer (SAM) in the quasi-crystalline state was prepared on the surface of the cubic CeO2 nanoparticles (6.5 ± 1.1 nm) by hydrothermal synthesis. The purification method to obtain quasi-crystalline SAM without residual (free) decanoic acid was developed. The SAM was carefully washed (purified) and characterized carefully by FT-IR, TG, DSC, and NMR. The obtained results showed that good agreement with the property of the dry state SAM. The solution state properties of the SAM were also examined by the CeO2 nanoparticles. It turned out that the quasi-crystalline SAM could be swollen by its good solvents, cyclohexane, and chloroform; however, the quasi-crystalline SAM showed that a size exclusion effect to the solvent, trans-decalin. In addition, it turned out that the molecular motion of the decanoic acids in the SAM was highly restricted even in the swollen state depending on the distance from the grafting point to the CeO2 surface. The strong osmosis was also observed. The solvent molecules were not easily released from the SAM even after the solvent molecules outside of the SAM were frozen.  相似文献   
66.
The design variable tolerance effects on the natural frequency variance of constrained multi-body systems in dynamic equilibrium are investigated in this study. Monte-Carlo simulation is often employed for such investigations, but it is known to have serious drawbacks. Excessive amount of computation time needs to be consumed since a large number of evaluations are usually required for the method. Furthermore, the solution accuracy cannot be always guaranteed in spite of the excessive amount of computation time. In order to overcome such drawbacks, a method employing eigenvalue sensitivity information is proposed to obtain the variance of natural frequency in this study. In order to verify the accuracy and the efficiency of the method, some numerical examples of multi-body systems in dynamic equilibrium are solved and the results are compared to those obtained by an analytical method and Monte-Carlo simulation.  相似文献   
67.
Canonical correlation analysis (CCA) is one of popular statistical methodologies in multivariate analysis, especially, in studying relation of two sets of variables. However, if sample sizes are smaller than the maximum of the dimensions of two sets of variables, it is not plausible to construct canonical coefficient matrices due to failure of inverting sample covariance matrices. In this article, we develop a two step procedure of CCA implemented in such situation. For this, seeded dimension reduction is adapted into CCA. Numerical studies confirm the approach, and two real data analyses are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
68.
Non healing chronic wounds are difficult to treat in patients with diabetes and can result in severe medical problems for these patients and for society. Negative-pressure wound therapy (NPWT) has been adopted to treat intractable chronic wounds and has been reported to be effective. However, the mechanisms underlying the effects of this treatment have not been elucidated. To assess the vasculogenic effect of NPWT, we evaluated the systemic mobilization of endothelial progenitor cells (EPCs) during NPWT. Twenty-two of 29 consecutive patients who presented at the clinic of Seoul National Universty Hospital between December 2009 and November 2010 who underwent NPWT for diabetic foot infections or skin ulcers were included in this study. Peripheral blood samples were taken before NPWT (pre-NPWT) and 7–14 days after the initiation of NPWT (during-NPWT). Fluorescence-activated cell sorting (FACS) analysis showed that the number of cells in EPC-enriched fractions increased after NPWT, and the numbers of EPC colony forming units (CFUs) significantly increased during NPWT. We believe that NPWT is useful for treating patients with diabetic foot infections and skin ulcers, especially when these conditions are accompanied by peripheral arterial insufficiency. The systemic mobilization of EPCs during NPWT may be a mechanism for healing intractable wounds in diabetic patients with foot infections or skin defects via the formation of increased granulation tissue with numerous small blood vessels.  相似文献   
69.
A multi‐channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge‐coupled device camera were used to simultaneously detect the separations in three parallel channels using laser‐induced fluorescence detection. The parallel separations of a 100‐bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (Mr = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single‐run and one‐step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi‐channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease‐related DNA fragments in parallel with high speed, throughput, and accuracy.  相似文献   
70.
The direct transfer of single‐crystalline Au nanowires (NWs) onto Au substrates was achieved by a simple attachment and detachment process. In the presence of a lubricant, Au NWs grown vertically on a sapphire substrate were efficiently moved to an Au substrate through van der Waals interactions. We demonstrate that the transferred Au NWs on the Au substrate can act as sensitive, reproducible, and long‐term‐stable surface‐enhanced Raman scattering (SERS) sensors by detecting human α‐thrombin as well as Pb2+ and Hg2+ ions. These three biochemically and/or environmentally important analytes were successfully detected with high sensitivity and selectivity by Au NW‐SERS sensors bound by a thrombin‐binding aptamer. Furthermore, the as‐prepared sensors remained in working order after being stored under ambient conditions at room temperature for 80 days. Because Au NWs can be routinely transferred onto Au substrates and because the resultant Au NW‐SERS sensors are highly stable and provide with high sensitivity and reproducibility of detection, these sensors hold potential for practical use in biochemical sensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号