首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   31篇
  国内免费   1篇
化学   776篇
晶体学   2篇
力学   1篇
数学   64篇
物理学   73篇
  2021年   11篇
  2020年   14篇
  2019年   13篇
  2016年   21篇
  2015年   20篇
  2014年   18篇
  2013年   37篇
  2012年   35篇
  2011年   50篇
  2010年   19篇
  2009年   31篇
  2008年   47篇
  2007年   35篇
  2006年   39篇
  2005年   33篇
  2004年   20篇
  2003年   26篇
  2002年   24篇
  2001年   17篇
  2000年   18篇
  1999年   15篇
  1998年   10篇
  1997年   15篇
  1996年   7篇
  1995年   20篇
  1994年   15篇
  1993年   15篇
  1992年   24篇
  1991年   18篇
  1990年   7篇
  1989年   18篇
  1988年   9篇
  1987年   10篇
  1986年   16篇
  1985年   7篇
  1984年   9篇
  1982年   11篇
  1981年   12篇
  1980年   8篇
  1978年   13篇
  1976年   4篇
  1975年   5篇
  1974年   5篇
  1972年   4篇
  1971年   7篇
  1932年   4篇
  1928年   5篇
  1914年   5篇
  1911年   4篇
  1893年   4篇
排序方式: 共有916条查询结果,搜索用时 31 毫秒
81.
In this study we demonstrate the potential of selective reagent ionisation‐time of flight‐mass spectrometry for the rapid and selective identification of a popular new psychoactive substance blend called ‘synthacaine’, a mixture that is supposed to imitate the sensory and intoxicating effects of cocaine. Reactions with H3O+ result in protonated parent molecules which can be tentatively assigned to benzocaine and methiopropamine. However, by comparing the product ion branching ratios obtained at two reduced electric field values (90 and 170 Td) for two reagent ions (H3O+ and NO+) to those of the pure chemicals, we show that identification is possible with a much higher level of confidence then when relying solely on the m/z of protonated parent molecules. A rapid and highly selective analytical identification of the constituents of a recreational drug is particularly crucial to medical personnel for the prompt medical treatment of overdoses, toxic effects or allergic reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
82.
83.
The rate constant of the comparably slow bimolecular NCN radical reaction NCN + O2 has been measured for the first time under combustion relevant conditions using the shock tube method. The thermal decomposition of cyanogen azide (NCN3) served as a clean high‐temperature source of NCN radicals. NCN concentration–time profiles have been detected by narrow‐bandwidth laser absorption at cm?1. The experiments behind incident shock waves have been performed with up to 17% O2 in the reaction gas mixture. At such high O2 mole fractions, it was necessary to take O2 relaxation into account that caused a gradual decrease of the temperature during the experiment. Moreover, following fast decomposition of NCN3 and collision‐induced intersystem crossing of the initially formed singlet NCN to its triplet ground state, an unexpected and slow additional formation of triplet NCN has been observed on a 100‐μs timescale. This delayed NCN formation was attributed to a fast recombination of 1NCN with O2 forming a 3NCNOO adduct acting as a reservoir species for NCN. Rate constant data for the reaction NCN + O2 have been measured at temperatures between 1674 and 2308 K. They are best represented by the Arrhenius expression . No pressure dependence has been observed at pressures between 216 and 706 mbar.  相似文献   
84.
The nature of the bonding and the aromaticity of the heavy Group 14 homologues of cyclopropenylium cations E3H3+ and E2H2E′H+ (E, E′=C–Pb) have been investigated systematically at the BP86/TZ2P DFT level by using several methods. Aromatic stabilization energies (ASE) were evaluated from the values obtained from energy decomposition analysis (EDA) of charged acyclic reference molecules. The EDA‐ASE results compare well with the extra cyclic resonance energy (ECRE) values given by the block localized wavefunction (BLW) method. Although all compounds investigated are Hückel 4n+2 π electron species, their ASEs indicate that the inclusion of Group 14 elements heavier than carbon reduces the aromaticity; the parent C3H3+ ion and Si2H2CH+ are the most aromatic, and Pb3H3+ is the least so. The higher energies for the cyclopropenium analogues reported in 1995 employed an isodesmic scheme, and are reinterpreted by using the BLW method. The decrease in the strength of both the π cyclic conjugation and the aromaticity in the order C?Si>Ge>Sn>Pb agrees reasonably well with the trends given by the refined nucleus‐independent chemical shift NICS(0)πzz index.  相似文献   
85.
Quantum-chemical calculations using DFT and ab initio methods have been carried out for 32 carbenes RR'C which comprise different classes of compounds and the associated ketenes RR'C═C═O. The calculated singlet-triplet gaps ΔE(S-T) of the carbenes exhibit a very high correlation with the bond dissociation energies (BDEs) of the ketenes. An energy decomposition analysis of the RR'C-CO bond using the triplet states of the carbene and CO as interacting fragments supports the assignment of ΔE(S-T) as the dominant factor for the BDE but also shows that the specific interactions of the carbene may sometimes compensate for the S/T gap. The trend of the interaction energy ΔE(int) values is mainly determined by the Pauli repulsion between the carbene and CO. The stability of amino-substituted ketenes strongly depends on the destabilizing conjugation between the nitrogen lone-pair orbital and the ketene double bonds. There is a ketene structure of the unsaturated N-heterocyclic carbene parent compound NHC1 with CO as a local energy minimum on the potential-energy surface. However, the compound NHC1-CO is thermodynamically unstable toward dissociation. The saturated homologue NHC2-CO has only a very small bond dissociation energy of D(e) = 3.2 kcal/mol. The [3]ferrocenophane-type compound FeNHC-CO has a BDE of D(e) = 16.0 kcal/mol.  相似文献   
86.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   
87.
Reaction of potassium tris(mercapto-tert-butylpyridazinyl)borate K[Tn(tBu)] with copper(II) chloride in dichloromethane at room temperature led to the diamagnetic copper boratrane compound [Cu{B(Pn(tBu))(3)}Cl] (Pn = pyridazine-3-thionyl) (1) under activation of the B-H bond and formation of a Cu-B dative bond. In contrast to this, stirring of the same ligand with copper(I) chloride in tetrahydrofuran (THF) gave the dimeric compound [Cu{Tn(tBu)}](2) (2) where one copper atom is coordinated by two sulfur atoms and one hydrogen atom of one ligand and one sulfur of the other ligand. Hereby, no activation of the B-H bond occurred but a 3-center-2-electron B-H···Cu bond is formed. The reaction of copper(II) chloride with K[Tn(tBu)] in water gave the same product 2, but a formal reduction of the metal center from Cu(II) to Cu(I) occurred. When adding tricyclohexyl phosphine to the reaction mixture of K[Tn(R)] (R = tBu, Me) and copper(I) chloride in MeOH, the distorted tetrahedral Cu complexes [Cu{Tn(R)}(PCy(3))] (R = tBu 3, Me 4) were formed. Compound 4 is exhibiting an "inverted" κ(3)-H,S,S, coordination mode. The copper boratrane 1 was further investigated by density functional theory (DFT) calculations for a better understanding of the M→B interaction involving the d(8) electron configuration of Cu.  相似文献   
88.
A cationic gold carbonyl complex has been synthesized and characterized using several techniques including X-ray crystallography. [(Mes(3)P)Au(CO)][SbF(6)] (Mes = 2,4,6-Me(3)C(6)H(2)) has a linear, two-coordinate gold atom. This compound displays the CO stretching frequency at 2185 cm(-1). The (13)C NMR signal of the gold-bound (13)CO appears as a doublet centered at δ 182.6 ((2)J(C,P) = 115 Hz). A computational study shows that the Au-CO bond consists of electrostatic attraction, Au ← CO donation, and significant Au → CO π-back-bonding components. Polarization of the CO bond caused by the electrostatic effect of the cationic gold center is mainly responsible for the large blue shift in the CO stretching frequency.  相似文献   
89.
Quantum chemical calculations using DFT (BP86) and ab initio methods (MP2, MP4 and CCSD(T)) have been carried out for the title compounds. The nature of the Pb?CPb interactions has been investigated with an energy decomposition analysis. The energy minimum structures of the halogen substituted Pb2X2 molecules possess a doubly bridged butterfly geometry A like the parent system Pb2H2. The unusual geometry can be explained with the interactions between PbX fragments in the X 2?? ground state which leads to one Pb?CPb electron-sharing ?? bond and two donor?Cacceptor bonds between the Pb?CX bonds as donor and vacant p(??) AOs of Pb. The energy difference between the equilibrium form A and the linear structure XPb??PbX (E) which is a second-order saddle point is much higher when X is a halogen atom than for X?=?H. This is because the a 4???????X 2?? excitation energies of PbX (X?=?F?CI) are higher than for PbH. The structural isomers B, D1, D2, E, F1, F2 and G of Pb2X2 are no minima on the potential energy surface.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号