首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110395篇
  免费   18201篇
  国内免费   13176篇
化学   78064篇
晶体学   1264篇
力学   6384篇
综合类   789篇
数学   14004篇
物理学   41267篇
  2024年   258篇
  2023年   2112篇
  2022年   2681篇
  2021年   3692篇
  2020年   4420篇
  2019年   4203篇
  2018年   3853篇
  2017年   3509篇
  2016年   5245篇
  2015年   5109篇
  2014年   6322篇
  2013年   8220篇
  2012年   9895篇
  2011年   10415篇
  2010年   7314篇
  2009年   7061篇
  2008年   7479篇
  2007年   6668篇
  2006年   6203篇
  2005年   5170篇
  2004年   4018篇
  2003年   3232篇
  2002年   3009篇
  2001年   2523篇
  2000年   2209篇
  1999年   2266篇
  1998年   1900篇
  1997年   1693篇
  1996年   1733篇
  1995年   1507篇
  1994年   1322篇
  1993年   1096篇
  1992年   976篇
  1991年   851篇
  1990年   712篇
  1989年   561篇
  1988年   413篇
  1987年   363篇
  1986年   359篇
  1985年   283篇
  1984年   205篇
  1983年   172篇
  1982年   138篇
  1981年   88篇
  1980年   64篇
  1979年   28篇
  1978年   24篇
  1976年   23篇
  1975年   23篇
  1957年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Dioscin (DIS), one of the most abundant bioactive steroidal saponins in Dioscorea sp., is used as a complementary medicine to treat coronary disease and angina pectoris in China. Although the pharmacological activities and pharmacokinetics of DIS have been well demonstrated, information regarding the final metabolic fates is very limited. This study investigated the in vivo metabolic profiles of DIS after oral administration by ultra‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry method. The structures of the metabolites were identified and tentatively characterized by means of comparing the molecular mass, retention time and fragmentation pattern of the analytes with those of the parent compound. A total of eight metabolites, including seven phase I and one phase II metabolites, were detected and tentatively identified for the first time. Oxidation, deglycosylation and glucuronidation were found to be the major metabolic processes of the compound in rats. In addition, a possible metabolic pathway on the biotransformation of DIS in vivo was proposed. This study provides valuable and new information on the metabolism of DIS, which will be helpful for further understanding its mechanism of action. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
102.
103.
104.
105.
106.
According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.  相似文献   
107.
108.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
109.
110.
The discharge of diverse pollutants has led to a complex water environment and posed a huge health threat to humans and animals. Self-propelled micromotors have recently attracted considerable attention for efficient water remediation due to their strong localized mass transfer effect. However, a single functionalized component is difficult to tackle with multiple contaminants and requires to combine different decontamination effects together. Here, we introduced a multifunctional micromotor to implement the adsorption and degradation roles simultaneously by integrating the poly(aspartic acid) (PASP) adsorbent with a MnO2-based catalyst. The as-prepared micromotors are well propelled in contaminated waters by MnO2 catalyzing hydrogen peroxide. In addition, the catalytic ramsdellite MnO2(R-MnO2) inner layer is decorated with Fe2O3 nanoparticles to improve their catalytic performance, contributing to an excellent degradation ability with 90% tetracycline (TC) removal in 50 minutes by enhanced Fenton-like reactions. Combining the attractive adsorption capability of poly (aspartic acid) (PASP), the composite micromotors offer an efficient removal of heavy metal ions in short time. Moreover, the designed micromotors are able to simultaneously remove antibiotic and heavy metals in mixed contaminants circumstance just in single treatment. This multifunctional micromotor with distinctive decontamination ability exhibits a promising prospective in treating multiple pollutants in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号