首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196378篇
  免费   2413篇
  国内免费   637篇
化学   109308篇
晶体学   2374篇
力学   7962篇
综合类   4篇
数学   19058篇
物理学   60722篇
  2016年   2476篇
  2015年   1823篇
  2014年   2609篇
  2013年   8218篇
  2012年   5483篇
  2011年   6870篇
  2010年   4604篇
  2009年   4524篇
  2008年   6178篇
  2007年   6335篇
  2006年   6086篇
  2005年   5543篇
  2004年   5082篇
  2003年   4542篇
  2002年   4450篇
  2001年   5834篇
  2000年   4483篇
  1999年   3564篇
  1998年   2778篇
  1997年   2820篇
  1996年   2760篇
  1995年   2546篇
  1994年   2422篇
  1993年   2201篇
  1992年   2706篇
  1991年   2556篇
  1990年   2511篇
  1989年   2549篇
  1988年   2491篇
  1987年   2491篇
  1986年   2305篇
  1985年   3210篇
  1984年   3230篇
  1983年   2625篇
  1982年   2825篇
  1981年   2787篇
  1980年   2665篇
  1979年   2831篇
  1978年   3096篇
  1977年   2902篇
  1976年   2858篇
  1975年   2710篇
  1974年   2654篇
  1973年   2680篇
  1972年   1725篇
  1969年   1454篇
  1968年   1929篇
  1967年   2126篇
  1966年   1923篇
  1965年   1500篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.  相似文献   
62.
63.
64.
Kim  F. H.  Moylan  S. P.  Phan  T. Q.  Garboczi  E. J. 《Experimental Mechanics》2020,60(7):987-1004
Experimental Mechanics - Insufficient data are available to fully understand the effects of metal additive manufacturing (AM) defects for widespread adoption of the emerging technology....  相似文献   
65.
66.
Journal of Analytical Chemistry - A new liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method has been developed and validated for alfuzosin quantification in...  相似文献   
67.
It is known that a distance-regular graph with valency k at least three admits at most two Qpolynomial structures. We show that all distance-regular graphs with diameter four and valency at least three admitting two Q-polynomial structures are either dual bipartite or almost dual bipartite. By the work of Dickie(1995) this implies that any distance-regular graph with diameter d at least four and valency at least three admitting two Q-polynomial structures is, provided it is not a Hadamard graph, either the cube H(d, 2)with d even, the half cube 1/2H(2d + 1, 2), the folded cube?H(2d + 1, 2), or the dual polar graph on [2A2d-1(q)]with q 2 a prime power.  相似文献   
68.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
69.
New thiazole derivatives were synthesized and fully characterized, then coordinated with PtCl4 salt. Also, the newly synthesized Pt(IV) complexes were investigated analytically (elemental and thermogravimetric analyses), spectrally (infrared, UV–visible, mass, 1H NMR, 13C NMR, X‐ray diffraction) as well as theoretically (kinetics, modeling and docking). The data extracted led to the establishment of the best chemical and structural forms. Octahedral geometry was the only formula proposed for all complexes, which is favorable for d6 systems. The molecular ion peaks from mass spectral analysis coincide with all analytical data, confirming the molecular formula proposed. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) allowed discrimination of features between crystalline particles and other amorphous morphology. By applying Gaussian09 as well as HyperChem 8.2 programs, the best structural forms were obtained, as well as computed significant parameters. Computed parameters such as softness, hardness, surface area and reactivity led us towards application in two opposing pathways: tumor inhibition and oxidation activation. The catalytic oxidation for CO was conducted over PtO2, which was yielded from calcination of the most reactive complex. The success of catalytic role for synthesized PtO2 was due to its particulate size and surface morphology, which were estimated from XRD patterns and SEM images, respectively. The antitumor activity was tested versus HCT‐116 and HepG‐2 cell lines. Mild toxicity was recorded for two of the derivatives and their corresponding complexes. This degree of toxicity is more favorable in most cases, due to exclusion of serious side effects, which is coherently attached with known antitumor drugs.  相似文献   
70.
In this work, a series of 2-chalcogenylindoles was synthesized by an efficient methodology, starting from chalcogenoalkynes, including a previously unreported tellurium indole derivative. For the first time, these 2-substituted chalcogenylindoles were obtained in the absence of metal catalyst or base, under thermal conditions only. In addition, the results described herein represent a methodology with inverse regioselectivity for the chalcogen functionalization of indoles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号