首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9470篇
  免费   1420篇
  国内免费   1161篇
化学   6838篇
晶体学   99篇
力学   429篇
综合类   114篇
数学   1079篇
物理学   3492篇
  2024年   15篇
  2023年   201篇
  2022年   221篇
  2021年   319篇
  2020年   396篇
  2019年   396篇
  2018年   321篇
  2017年   317篇
  2016年   452篇
  2015年   424篇
  2014年   540篇
  2013年   633篇
  2012年   860篇
  2011年   849篇
  2010年   561篇
  2009年   500篇
  2008年   655篇
  2007年   627篇
  2006年   507篇
  2005年   464篇
  2004年   315篇
  2003年   259篇
  2002年   245篇
  2001年   222篇
  2000年   231篇
  1999年   194篇
  1998年   179篇
  1997年   151篇
  1996年   165篇
  1995年   150篇
  1994年   110篇
  1993年   98篇
  1992年   88篇
  1991年   62篇
  1990年   66篇
  1989年   42篇
  1988年   38篇
  1987年   33篇
  1986年   27篇
  1985年   34篇
  1984年   15篇
  1983年   14篇
  1982年   16篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 145 毫秒
991.
鲁光沅  刘伦 《摩擦学学报》1998,18(3):232-237
对12年前经离子注入处理后的GCr15轴承钢表面耐磨性能的时间效应进行了探讨。发现离子注入材料的改性效果存在时间效应性。利用AES和X射线衍射分析发现,掺杂原子及材料表面吸附的氧原子的多元迁移和硬质相的生成是造成离子注入材料改性时效的原因。  相似文献   
992.
Disulfide‐rich peptides containing three or more disulfide bonds are promising therapeutic and diagnostic agents, but their preparation is often limited by the tedious and low‐yielding folding process. We found that a single cystine‐to‐diaminodiacid replacement could significantly increase the folding efficiency of disulfide‐rich peptides and thus improve their production yields. The practicality of this strategy was demonstrated by the synthesis and folding of derivatives of the μ‐conotoxin SIIIA, the preclinical hormone hepcidin, and the trypsin inhibitor EETI‐II. NMR and X‐ray crystallography studies confirmed that these derivatives of disulfide‐rich peptide retained the correct three‐dimensional conformations. Moreover, the cystine‐to‐diaminodiacid replacement enabled structural tuning, thereby leading to an EETI‐II derivative with higher bioactivity than the native peptide.  相似文献   
993.
Stereocomplexation is the stereoselective interaction between two opposite enantiomeric polymers through an interlocked orderly assembly. Most studies focus on the stereocomplex formation from the crystalline opposite enantiomers having the identical structure; nevertheless, rare examples were reported regarding the crystalline stereocomplexes from enantiomeric polymers having different chemical structures. Herein we show a strategy for polymer orderly assembly through the formation of crystalline hetero‐stereocomplexed polymeric materials by the cocrystallization of amorphous isotactic polycarbonates with different chemical structures and opposite configurations. The behaviors in the crystalline state are significantly different from that of the component enantiomeric polymers or their homo‐stereocomplexes. This study is expected to open up a new way to prepare various semicrystalline materials having a wide variety of physical properties and degradability.  相似文献   
994.
A dielectric constant transition is chemically triggered and thermally switched in (HPy)2[Na(H2O)Co(CN)6] ( 2 , HPy=pyridinium cation) by single‐crystal‐to‐single‐crystal transformation and structural phase transition, respectively. Upon dehydration, (HPy)2[Na(H2O)2Co(CN)6] ( 1 ) transforms to its semi‐hydrated form 2 , accompanying a transition from a low‐dielectric state to a high‐dielectric state, and vice versa. This dielectric switch is also realized by a structural phase transition in 2 that occurs between room‐ and low‐temperature phases, and which corresponds to high‐ and low‐dielectric states, respectively. The switching property is due to the variation in the environment surrounding the HPy cation, that is, the hydrogen‐bonding interactions and the crystal packing, which exert predominant influences on the dynamics of the cations that transit between the static and motional states.  相似文献   
995.
The non‐aqueous Li–air (O2) battery has attracted intensive interest because it can potentially store far more energy than today′s batteries. Presently Li–O2 batteries suffer from parasitic reactions owing to impurities, found in almost all non‐aqueous electrolytes. Impurities include residual protons and protic compounds that can react with oxygen species, such as the superoxide (O2?), a reactive, one‐electron reduction product of oxygen. To avoid the parasitic reactions, it is crucial to have a fundamental understanding of the conditions under which reactive oxygen species are generated in non‐aqueous electrolytes. Herein we report an in situ spectroscopic study of oxygen reduction on gold in a dimethyl sulfoxide electrolyte containing phenol as a proton source. It is shown directly that O2?, not HO2, is the first stable intermediate during the oxygen reduction process to hydrogen peroxide. The unusual stability of O2? is explained using density functional theory (DFT) calculations.  相似文献   
996.
A novel method for convenient access to CF3‐containing azirines has been developed, and involves a copper‐catalyzed trifluoromethylazidation of alkynes and a photocatalyzed rearrangement. Both terminal and internal alkynes are compatible with the mild reaction conditions, thus delivering the CF3‐containing azirines in moderate to good yields. The azirines can be converted into various CF3‐substituted aziridines.  相似文献   
997.
The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next‐generation electronics. Herein, fiber‐shaped Zn–air batteries, are realized for the first time by designing aligned, cross‐stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g?1. They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.  相似文献   
998.
Copper metal is in theory a viable oxidative electrocatalyst based on surface oxidation to CuIII and/or CuIV, but its use in water oxidation has been impeded by anodic corrosion. The in situ formation of an efficient interfacial oxygen‐evolving Cu catalyst from CuII in concentrated carbonate solutions is presented. The catalyst necessitates use of dissolved CuII and accesses the higher oxidation states prior to decompostion to form an active surface film, which is limited by solution conditions. This observation and restriction led to the exploration of ways to use surface‐protected Cu metal as a robust electrocatalyst for water oxidation. Formation of a compact film of CuO on Cu surface prevents anodic corrosion and results in sustained catalytic water oxidation. The Cu/CuO surface stabilization was also applied to Cu nanowire films, which are transparent and flexible electrocatalysts for water oxidation and are an attractive alternative to ITO‐supported catalysts for photoelectrochemical applications.  相似文献   
999.
Inserting polymers into a crystalline inorganic matrix to understand the structure, position, and the structure–property relationships of the resulting composites is important for designing new inorganic‐organic materials and tuning their properties. Single crystals of polymer‐chalcogenide composites were successfully prepared by trapping polyethyleneglycol within a selenidostannate matrix under surfactant‐thermal conditions. This work might provide a new strategy for preparing novel crystalline polymer‐inorganic composites through encapsulating polymer chains within inorganic matrices.  相似文献   
1000.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号