首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   6篇
化学   83篇
晶体学   1篇
力学   1篇
数学   17篇
物理学   29篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   11篇
  2019年   7篇
  2018年   6篇
  2017年   13篇
  2016年   17篇
  2015年   4篇
  2014年   8篇
  2013年   18篇
  2012年   5篇
  2011年   11篇
  2010年   8篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1980年   3篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
121.
We have developed a stochastic mathematical formulation for designing a network of multi-product supply chains comprising several capacitated production facilities, distribution centres and retailers in markets under uncertainty. This model considers demand-side and supply-side uncertainties simultaneously, which makes it more realistic in comparison to models in the existing literature. In this model, we consider a discrete set as potential locations of distribution centres and retailing outlets and investigate the impact of strategic facility location decisions on the operational inventory and shipment decisions of the supply chain. We use a path-based formulation that helps us to consider supply-side uncertainties that are possible disruptions in manufacturers, distribution centres and their connecting links. The resultant model, which incorporates the cut-set concept in reliability theory and also the robust optimisation concept, is a mixed integer nonlinear problem. To solve the model to attain global optimality, we have created a transformation based on the piecewise linearisation method. Finally, we illustrate the model outputs and discuss the results through several numerical examples, including a real-life case study from the agri-food industry.  相似文献   
122.
Nanostructured biomaterials have great potential in the field of biomedical engineering. Efforts for treatment of cardiovascular diseases focused on introducing vascular substitutes that are nonthrombogenic and have long‐term patency, but still there is not any perfect replacement for clinical use. In this study, nanostructure tubes of a commonly known biocompatible polymer, polyethylene terephthalate (PET), were prepared via electrospinning process using small diameter mandrel as a collector with two different speeds. The nanofibers (NFs) morphologies' physical and mechanical properties were investigated according to scanning electron microscope (SEM), water contact angle (WCA), porosity measurement, differential scanning calorimetry (DSC), and tensile test. Finer NFs, more percentage of crystallinity, and superior mechanical properties were observed for samples prepared by higher speed mandrel. Since both samples stimulated platelet adhesion and activation, further surface modification with sodium nitrate as nitric oxide (NO) donor was done using two different approaches: dip‐coating and electrospraying. The modified NFs were evaluated via SEM, WCA, tensile test, platelets, and cell adhesion. The results showed more hydrophilicity, reduction in platelet adhesion, and improved blood compatibility for eNO‐HS (electrosprayed NO for higher collector speed) compared with other samples implying the promising potential of this fabrication and modification technique for improving PET‐based cardiovascular substitutes.  相似文献   
123.
The efficiency of a molecularly imprinted polymer as a selective packing material for the solid‐phase extraction of imatinib mesylate sorption was investigated. The molecularly imprinted polymer was prepared using N,N′‐methylenebisacrylamide as a cross‐linker agent, N‐vinylcaprolactam as a thermo‐sensitive monomer, 1‐vinyl‐2‐pyrrolidone and methyl methacrylate as functional monomers, azobisisobutyronitrile as an initiator and imatinib mesylate as a template. The drug‐imprinted polymer was identified by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. It was found that this polymer can be used for determination of trace levels of imatinib mesylate with a recovery percentage that could reach over 90%. Furthermore, the synthesized molecularly imprinted polymer indicated higher selectivity towards imatinib mesylate than other compounds. From isotherm study, the equilibrium adsorption data of imatinib mesylate by imprinted polymer were analyzed by Langmuir, Freundlich, and Temkin isotherm models. The developed method was used for determination of imatinib mesylate in human fluid samples by high performance liquid chromatography with excellent results.  相似文献   
124.
In this paper we study the piecewise collocation method for a class of functional integral equations with state-dependent delays that is, where the delays depend on the solution. It is well known that these equations typically have discontinuity in the solution or its derivatives at the initial point of integration domain. This discontinuity propagated along the integration interval giving rise to subsequent points, called ”singular points”, which can not be determined priori and the solution derivatives in these points are smoothed out along the interval. Most of the known numerical methods for this type of equations are generally very sensitive to the singular points and therefore must have a process that detects these points and insert them into the mesh to guarantee the required accuracy. Here, we present a numerical algorithm based on the piecewise collocation method and an approach for tracking the singular points relying on the recent strategy for implicit delay differential equations which has been proposed by Guglielmi and Hairer in 2008. The convergence analysis of the method is investigated and some numerical experiments are presented for clarifying the robustness of the method.  相似文献   
125.
126.
The main idea of this paper is to utilize the adaptive iterative schemes based on regularization techniques for moderately ill‐posed problems that are obtained by a system of linear two‐dimensional Volterra integral equations with a singular matrix in the leading part. These problems may arise in the modeling of certain heat conduction processes as well as in the dynamic simulation packages such as compressible flow through a plant piping network. Owing to the ill‐posed nature of the first kind Volterra equation that appears in the system, we will focus on the two families of regularization algorithms, ie, the Landweber and Lavrentiev type methods, where we treat both the exact and perturbed data. Our aim is to work directly with the original Volterra equations without any kind of reduction. Two fast iterative algorithms with reasonable computational complexity are developed. Numerical experiments on a few test problems are used to illustrate the validity and efficiency of the proposed iterative methods in comparison with the classical regularization methods.  相似文献   
127.
Gold nanoparticles are potentially very attractive components for therapeutic delivery since they can be synthesized with any diameter from 1 to 200 nm to carry a payload of therapeutic molecules into a cell without triggering an immune response. Gold nanoparticles must undergo surface transformations before coupling to therapeutic molecules to become eligible for this purpose. It is now more understood that amine groups can bind to gold nanoparticles strongly, which has enabled surface modification of gold nanoparticles with amino acid lysine through its amine group. These lysine capped gold nanoparticles can further be coupled to therapeutic molecules for delivery purposes. In this study gold nanoparticles were first synthesized and capped with lysine molecules. TEM and FTIR measurements demonstrated the synthesis of lysine-capped gold nanoparticles with an average diameter of 10 nanometers. Interferon alpha molecules-one of the most important therapeutic protein were then chemically bound to lysine-capped gold nanoparticles through a two-step process of diimide-activated amidation. The conjugation of interferon molecules to lysine capped gold nanoparticles was carried out via the reaction between the free amine group of lysine and carboxyl groups of interferon using N-ethyl-N′-13-dimethyl-aminopropyl (EDAC) as a coupling agent. The process of conjugation has also been studied by transmission electron microscopy.  相似文献   
128.
The four-body Yakubovsky equations in a three-dimensional approach with the inclusion of the three-body forces are proposed. The four-body bound state with two- and three-body interactions is formulated in the three-dimensional approach for identical particles as a function of vector Jacobi momenta, specifically, the magnitudes of the momenta and the angles between them. The modified three-dimensional Yakubovsky integral equations are successfully solved with the scalar two-meson exchange three-body force, where the Malfliet-Tjon-type two-body force is implemented. The three-body force effects on the energy eigenvalue and the four-body wave function, as well as accuracy of our numerical calculations are presented.  相似文献   
129.
130.
Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl−Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号