首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1665篇
  免费   48篇
  国内免费   7篇
化学   1342篇
晶体学   13篇
力学   25篇
数学   210篇
物理学   130篇
  2023年   11篇
  2022年   15篇
  2021年   41篇
  2020年   44篇
  2019年   33篇
  2018年   28篇
  2017年   19篇
  2016年   58篇
  2015年   44篇
  2014年   48篇
  2013年   92篇
  2012年   135篇
  2011年   111篇
  2010年   64篇
  2009年   44篇
  2008年   122篇
  2007年   137篇
  2006年   106篇
  2005年   107篇
  2004年   84篇
  2003年   75篇
  2002年   70篇
  2001年   19篇
  2000年   14篇
  1999年   12篇
  1998年   18篇
  1997年   18篇
  1996年   22篇
  1995年   6篇
  1994年   8篇
  1993年   11篇
  1992年   12篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   11篇
  1984年   12篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   7篇
  1972年   1篇
  1968年   1篇
  1937年   1篇
排序方式: 共有1720条查询结果,搜索用时 31 毫秒
81.
A series of substituted 3‐azabicyclo[4.1.0]hept‐4‐ene derivatives were prepared and analysed by cyclic voltammetry. Preparative aerobic electrochemical oxidation reactions were then carried out. Three original endoperoxides were isolated, characterised and subjected to antimalarial and cytotoxicity activity assays.  相似文献   
82.
Sequence-defined polymers can be programmed to self-assemble into precise nanostructures for applications in biosensing, drug delivery, optics, and molecular computation. Inspired by the natural self-assembly processes present in biological protein and DNA systems, sets of molecular design rules have emerged across materials classes as instructions to build a variety of tunable structures. This review highlights recent advances in self-assembled sequence-defined and sequence-specific polymers across peptides, peptoids, DNA, and non-biological synthetic materials, with a focus on synthesis, assembly processes and overall structure. Specifically, these self-assembled structures are free-floating, as such constructs can potentially serve as a platform for the aforementioned applications. Emphasis is placed on the molecular design of polymers that self-assemble into zero-dimensional, one-dimensional, two-dimensional, or three-dimensional nanostructures. With the development of automated syntheses and increasing control over self-assembly, future work may focus on emerging classes of compatible hybrid materials with exciting directions toward new architectures and applications.  相似文献   
83.
We report the first transition metal catalyst- and ligand-free conjugate addition of lithium tetraorganozincates (R4ZnLi2) to nitroolefins. Displaying enhanced nucleophilicity combined with unique chemoselectivity and functional group tolerance, homoleptic aliphatic and aromatic R4ZnLi2 provide access to valuable nitroalkanes in up to 98 % yield under mild conditions (0 °C) and short reaction time (30 min). This is particularly remarkable when employing β-nitroacrylates and β-nitroenones, where despite the presence of other electrophilic groups, selective 1,4 addition to the C=C is preferred. Structural and spectroscopic studies confirmed the formation of tetraorganozincate species in solution, the nature of which has been a long debated issue, and allowed to unveil the key role played by donor additives on the aggregation and structure of these reagents. Thus, while chelating N,N,N’,N’-tetramethylethylenediamine (TMEDA) and (R,R)-N,N,N’,N’-tetramethyl-1,2-diaminocyclohexane (TMCDA) favour the formation of contacted-ion pair zincates, macrocyclic Lewis donor 12-crown-4 triggers an immediate disproportionation process of Et4ZnLi2 into equimolar amounts of solvent-separated Et3ZnLi and EtLi.  相似文献   
84.
Ab initio composite approaches have been utilized to model and predict main group thermochemistry within 1 kcal mol−1, on average, from well-established reliable experiments, primarily for molecules with less than 30 atoms. For molecules of increasing size and complexity, such as biomolecular complexes, composite methodologies have been limited in their application. Therefore, the domain-based local pair natural orbital (DLPNO) methods have been implemented within the correlation consistent composite approach (ccCA) framework, namely DLPNO-ccCA, to reduce the computational cost (disk space, CPU (central processing unit) time, memory) and predict energetic properties such as enthalpies of formation, noncovalent interactions, and conformation energies for organic biomolecular complexes including one of the largest molecules examined via composite strategies, within 1 kcal mol−1, after calibration with 119 molecules and a set of linear alkanes. © 2019 Wiley Periodicals, Inc.  相似文献   
85.
86.
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.  相似文献   
87.
Dendrimers are macromolecules characterized by high controlled size, shape and architecture, presence of inner cavities able to accommodate small molecules and many peripheral functional groups to bind target entities. They are of eminent interest for biomedical applications, including gene transfection, tissue engineering, imaging, and drug delivery. The well-known pharmacological activities of ursolic and oleanolic acids are limited by their small water solubility, non-specific cell distribution, low bioavailability, poor pharmacokinetics, and their direct administration could result in the release of thrombi. To overcome such problems, in this paper we described their physical incorporation inside amino acids-modified polyester-based dendrimers which made them highly water-soluble. IR, NMR, zeta potential, mean size of particles, buffer capacity and drug release profiles of prepared materials were reported. The achieved water-soluble complexes harmonize a polycationic character and a buffer capacity which presuppose efficient cell penetration and increased residence time with a biodegradable cell respectful scaffold, thus appearing as a promising team of not toxic prodrugs for safe administration of ursolic and oleanolic acids.  相似文献   
88.
89.
ABSTRACT Proton NMR profiling is nowadays a consolidated technique for the identification of geographical origin of food samples. The common approach consists in correlating NMR spectra of food samples to their territorial origin by multivariate classification statistical algorithms. In the present work, we illustrate an alternative perspective to exploit territorial information, contained in the NMR spectra, which is based on the implementation of a geographic information system (GIS). Nuclear magnetic resonance spectra are used to build a GIS map permitting the identification of territorial regions having strong similarities in the chemical content of the produced food (terroir units). These terroir units can, in turn, be used as input for labeling samples to be analyzed by traditional classification methods. In this work, we describe the methods and the algorithms that permit to produce GIS maps from NMR profiles and apply the described method to the analysis of the geographical distribution of olive oils in an Italian region. In particular, we analyzed by 1H NMR up to 98 georeferenced olive oil samples produced in the Abruzzo Italian region. By using the first principal component of the NMR variables selected according to the Moran test, we produced a GIS map, in which we identified two regions incidentally corresponding to the provinces of Teramo and Pescara. We then labeled the samples according to the province of provenience and built an LDA model that provides a classification ability up to 99% . A comparison between the variables selected in the geostatistics and classification steps is finally performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号