首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   20篇
  国内免费   2篇
化学   476篇
晶体学   3篇
力学   49篇
数学   128篇
物理学   126篇
  2022年   8篇
  2021年   17篇
  2020年   11篇
  2019年   11篇
  2018年   6篇
  2017年   10篇
  2016年   30篇
  2015年   19篇
  2014年   28篇
  2013年   50篇
  2012年   45篇
  2011年   49篇
  2010年   26篇
  2009年   23篇
  2008年   42篇
  2007年   48篇
  2006年   42篇
  2005年   35篇
  2004年   25篇
  2003年   15篇
  2002年   23篇
  2001年   8篇
  2000年   7篇
  1998年   9篇
  1997年   6篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   9篇
  1990年   6篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   15篇
  1979年   6篇
  1978年   4篇
  1976年   6篇
  1975年   7篇
  1974年   5篇
  1972年   5篇
  1966年   4篇
  1965年   4篇
排序方式: 共有782条查询结果,搜索用时 635 毫秒
101.
The ESR spectra of the 4-nitropyridine/caesium system in dimethoxyethane have been measured in the range of temperature between ?100 and +20°C. These spectra are drastically different from those of the ion pairs obtained with the lighter alkali metals, and an interpretation is offered.  相似文献   
102.
Summary A 3D QSAR methodology based on the combined use of conformational analysis and chemometrics was applied to perform a comparative analysis of the 3D conformational features of 13 nonpeptide angiotensin II receptor antagonists showing different levels of binding affinity. Conformational analysis by using a molecular mechanics MM2 method was carried out for each of these structures to obtain conformational minima. These minima were described by ten interatomic distances which define the relative spatial disposition of five significant atoms belonging to relevant functional groups present in all the 13 molecules. The structure-activity relationship between the interatomic distances and the biological activity was then assessed by using chemometric methods (cluster analysis, principal component analysis, classification methods). With our indirect approach based on the search for geometrical similarity it was possible, even though structural information on the receptor active site was lacking, to identify the 3D geometrical requirements for the binding affinity of nonpeptide angiotensin II receptor inhibitors.  相似文献   
103.
This work concerns a comparison of the hydration properties and self-association behavior in aqueous solution of three biologically relevant simple molecules: tert-butyl alcohol (TBA), trimethylamine-n-oxide (TMAO), and glycine betaine (GB). These molecules were used as a model to study hydrophobic behavior in water solutions. In particular, water perturbation induced by TBA, TMAO, and GB molecules was studied as a function of the solute molar fraction X(2) (0 < X(2) < 0.04) by Raman spectra of water in the fundamental OH-stretching region (3,800-2,800 cm(-1)). Furthermore, possible hydrophobic clustering of these molecules was investigated by studying the behavior of the alkyl CH stretching band in the 3,100-2,900 cm(-1) frequency region as a function of X(2). To establish the existence of a correlation between the effects of these three solutes on the micellization process and changes in the properties of the solvent, the behavior of the critical micelle concentration of sodium dodecyl sulfate was also investigated as a function of the added amount of TBA, TMAO, and GB. On the whole, these data show that there is no direct correlation between a solute's effect on the water structure and its effect on micelle or protein stability. Results indicate that, while TBA starts to self-aggregate at approximately X(2) = 0.025, both TMAO and GB do not exhibit any significant self-aggregation up to the highest concentration considered. In addition, nonadditive perturbations of the H-bonded networks of solvent water are observed in the case of TBA solutions, but are absent in both the TMAO and GB cases. The absence of these nonlinear effects in TMAO and GB water solutions allow for tracing the microscopical mechanism of the neutrality of these osmolytes toward hydrophobic effects. This confers the compatibility to these two osmolytes, which can be accumulated at high concentrations without interfering with biochemical processes in the cell.  相似文献   
104.
The transmission of polar effects through the bicyclo[2.2.2]octane framework has been investigated by ascertaining how the geometry of a phenyl group at a bridgehead position is affected by a variable substituent at the opposite bridgehead position. We have determined the molecular structure of several Ph-C(CH(2)-CH(2))(3)C-X molecules (where X is a charged or dipolar substituent) from HF/6-31G and B3LYP/6-311++G molecular orbital calculations and have progressively replaced each of the three -CH(2)-CH(2)- bridges by a pair of hydrogen atoms. Thus the bicyclo[2.2.2]octane derivatives were changed first into cyclohexane derivatives in the boat conformation, then into n-butane derivatives in the anti-syn-anti conformation, and eventually into assemblies of two molecules, Ph-CH(3) and CH(3)-X, appropriately oriented and kept at a fixed distance. For each variable substituent the deformation of the benzene ring relative to X = H remains substantially the same even when the substituent and the phenyl group are no longer connected by covalent bonds. This provides unequivocal evidence that long-range polar effects in bicyclo[2.2.2]octane derivatives are actually field effects, being transmitted through space rather than through bonds. Varying the substituent X in a series of Ph-C(CH(2)-CH(2))(3)C-X molecules gives rise to geometrical variation (relative to X = H) not only in the benzene ring but also in the bicyclo[2.2.2]octane cage. The two deformations are poorly correlated. The rather small deformation of the benzene ring correlates well with traditional measures of long-range polar effects in bicyclo[2.2.2]octane derivatives, such as sigma(F) or sigma(I) values. The much larger deformation of the bicyclo[2.2.2]octane cage is controlled primarily by the electronegativity of X, similar to deformation of the benzene ring in Ph-X molecules. Thus the field and electronegativity effects of the substituent are well separated and can be studied simultaneously, as they act on different parts of the molecular skeleton.  相似文献   
105.
The molecular structures of ethynylbenzene and s-triethynylbenzene have been accurately determined by gas-phase electron diffraction and ab initio/DFT MO calculations and are compared to that of p-diethynylbenzene from a previous study [Domenicano, A.; Arcadi, A.; Ramondo, F.; Campanelli, A. R.; Portalone, G.; Schultz, G.; Hargittai, I. J. Phys. Chem. 1996, 100, 14625]. Although the equilibrium structures of the three molecules have C2v, D3h, and D2h symmetry, respectively, the corresponding average structures in the gaseous phase are best described by nonplanar models of Cs, C3v, and C2v symmetry, respectively. The lowering of symmetry is due to the large-amplitude motions of the substituents out of the plane of the benzene ring. The use of nonplanar models in the electron diffraction analysis yields ring angles consistent with those from MO calculations. The molecular structure of ethynylbenzene reported from microwave spectroscopy studies is shown to be inaccurate in the ipso region of the benzene ring. The variations of the ring C-C bonds and C-C-C angles in p-diethynylbenzene and s-triethynylbenzene are well interpreted as arising from the superposition of independent effects from each substituent. In particular, experiments and calculations consistently show that the mean length of the ring C-C bonds increases by about 0.002 A per ethynyl group. MO calculations at different levels of theory indicate that though the length of the C[triple bond]C bond of the ethynyl group is unaffected by the pattern of substitution, the C(ipso)-C(ethynyl) bonds in p-diethynylbenzene are 0.001-0.002 A shorter than the corresponding bonds in ethynylbenzene and s-triethynylbenzene. This small effect is attributed to conjugation of the two substituents through the benzene ring. Comparison of experimental and MO results shows that the differences between the lengths of the C(ipso)-C(ethynyl) and C(ipso)-C(ortho) bonds in the three molecules, 0.023-0.027 A, are correctly computed at the MP2 and B3LYP levels of theory but are overestimated by a factor of 2 when calculated at the HF level.  相似文献   
106.
Different failure modes of silicon are observed. Experimental results are not able to explain these variations clearly and therefore numerical simulations have been performed. In order to reduce high computational costs a simplified method to introduce weakened areas on silicon chips is presented. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
107.
The 7σ7σ discrepancy between the proton rms charge radius from muonic hydrogen and the CODATA-2010 value from hydrogen spectroscopy and electron-scattering has caused considerable discussions. Here, we review the theory of the 2S–2P Lamb shift and 2S hyperfine splitting in muonic hydrogen combining the published contributions and theoretical approaches. The prediction of these quantities is necessary for the determination of both proton charge and Zemach radii from the two 2S–2P transition frequencies measured in muonic hydrogen; see Pohl et al. (2010) [9] and Antognini et al. (2013) [71].  相似文献   
108.
Abstract

Raman phonon spectra of 9, 10-dinitroanthracene have been recorded in the pressure range 0-6GPa. No phase transition is detected up to the maximum pressure studied. Quasi Harmonic Lattice Dynamics calculations, based on an atom-atom potential previously modeled on homologous 9,10-disubstituted anthracenes, have been performed. The optimized potential was used to calculate the equilibrium geometry and the lattice phonon frequencies as a function of pressure. The calculated structure at ambient conditions closely resembles the experimental one. The calculated phonon frequencies show a good agreement with the experimental values at all pressures measured.  相似文献   
109.

Enzymes are gradually increasingly preferred over chemical processes, but commercial enzyme applications remain limited due to their low stability and low product recovery, so the application of an immobilization technique is required for repeated use. The aims of this work were to produce stable enzyme complexes of cross-linked xylanase on magnetic chitosan, to describe some characteristics of these complexes, and to evaluate the thermal stability of the immobilized enzyme and its reusability. A xylanase was cross-linked to magnetite particles prepared by in situ co-precipitation of iron salts in a chitosan template. The effect of temperature, pH, kinetic parameters, and reusability on free and immobilized xylanase was evaluated. Magnetization, morphology, size, structural change, and thermal behavior of immobilized enzyme were described. 1.0?±?0.1 μg of xylanase was immobilized per milligram of superparamagnetic chitosan nanoparticles via covalent bonds formed with genipin. Immobilized xylanase showed thermal, pH, and catalytic velocity improvement compared to the free enzyme and can be reused three times. Heterogeneous aggregates of 254 nm were obtained after enzyme immobilization. The immobilization protocol used in this work was successful in retaining enzyme thermal stability and could be important in using natural compounds such as Fe3O4@Chitosan@Xylanase in the harsh temperature condition of relevant industries.

  相似文献   
110.
An analytical method for determining seleno‐methionine, methyl‐seleno‐cysteine, and seleno‐cystine in wheat bran was developed and validated. Four different extraction procedures were evaluated to simultaneously extract endogenous free and conjugated seleno‐amino acids in wheat bran in order to select the best extraction protocol in terms of seleno amino acid quantitation. The extracted samples were subjected to a clean‐up by a reversed phase/strong cation exchange solid‐phase extraction and analyzed by chiral hydrophilic interaction liquid chromatography‐tandem mass spectrometry. The optimized extraction protocol was employed to validate the methodology. Process efficiency ranged from 58 to 112% and trueness from 73 to 98%. Limit of detection and limit of quantification were lower than 1 ng/g. Four wheat bran samples were analyzed for both total Se and single seleno‐amino acids determination. The results showed that Se‐ seleno‐methyl‐l selenocysteine was the major seleno‐amino acid in wheat bran while seleno‐methionine and seleno‐cysteine were both minor species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号