首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87885篇
  免费   9977篇
  国内免费   14536篇
化学   60777篇
晶体学   2764篇
力学   5896篇
综合类   1054篇
数学   18475篇
物理学   23432篇
  2024年   184篇
  2023年   772篇
  2022年   1539篇
  2021年   2033篇
  2020年   2826篇
  2019年   2484篇
  2018年   2280篇
  2017年   2922篇
  2016年   3779篇
  2015年   3306篇
  2014年   4385篇
  2013年   6724篇
  2012年   6235篇
  2011年   5552篇
  2010年   4821篇
  2009年   5588篇
  2008年   5827篇
  2007年   6028篇
  2006年   5510篇
  2005年   5006篇
  2004年   4669篇
  2003年   4048篇
  2002年   3853篇
  2001年   2937篇
  2000年   2836篇
  1999年   2357篇
  1998年   2099篇
  1997年   1776篇
  1996年   1643篇
  1995年   1391篇
  1994年   1295篇
  1993年   1003篇
  1992年   911篇
  1991年   590篇
  1990年   530篇
  1989年   379篇
  1988年   356篇
  1987年   266篇
  1986年   244篇
  1985年   259篇
  1984年   221篇
  1983年   174篇
  1982年   189篇
  1981年   115篇
  1980年   77篇
  1979年   78篇
  1978年   50篇
  1977年   46篇
  1976年   46篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
3.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
4.
5.
6.
There are marine cytotoxic bromotriterpenoids, named the thyrsiferol family that are structurally characterized by some tetrahydropyran (THP) and tetrahydrofuran (THF) rings. The thyrsiferol family belongs to natural products that are often difficult to determine their stereostructures even by the current, highly advanced spectroscopic methods, especially in acyclic systems including stereogenic tetrasubstituted carbon centers. In such cases, it is effective to predict and synthesize the possible stereostructures. Herein, to elucidate ambiguous stereostructures and unassigned absolute configurations of aplysiol B, laurenmariannol, and saiyacenol A, members of the thyrsiferol family, we carried out their asymmetric chemical syntheses featuring 6-exo and 5-exo oxacyclizations of epoxy alcohol precursors and 6-endo bromoetherification of a bishomoallylic alcohol. In this paper, we report total assignments of their stereostructures through their asymmetric chemical syntheses and also their preliminary cytotoxic activities against some tumor cells. These results could not have been achieved without depending on asymmetric total synthesis.  相似文献   
7.
8.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
9.
Facile construction of sulfur-rich polymers using readily available raw chemicals is an area aggressively pursued but challenging. Herein we use common feedstocks of ethylene oxide (EO), propylene oxide (PO), and carbonyl sulfide (COS) to synthesize copoly(thioether)s which are traditionally produced from unpleasant and difficult to store episulfides. In this protocol, the EO/COS coupling selectively generates a pure poly(ethylene sulfide) (PES) with melting temperature (Tm) values up to 172°C and high yields up to 98%. The EO/PO/COS terpolymerization leads to the incorporation of soft poly(propylene sulfide) (PPS) and hard PES segments together, affording a random PES-co-PPS copoly(thioether) with the complete consumption of EO and PO. Additionally, by simply varying the EO/PO feeding ratio, the obtained copoly(thioether)s possess tunable thermal properties, Tm values in the range of 76–144°C, and excellent solubility. These copolymerizations are conducted in one-pot/one-step at industrially favored reaction temperatures of 100–120°C using catalysts of common organic bases, suggesting a facile and practical manner. Especially, the copoly(thioether) exhibits high refractive indices up to 1.68 owing to its high sulfur content, suggesting a broad application prospect in optical materials.  相似文献   
10.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号