首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用X射线衍射(XRD), X射线光电子能谱(XPS), 原位红外(in situ IR)光谱和CO2程序升温脱附(CO2-TPD)等技术研究了K对Mg-Al水滑石复合氧化物(MgAlO)的表面改性. 结果表明, 当K负载量臆8%(w)时, K高度分散在MgAlO表面, 并与载体作用形成了新的Lewis碱位. 其中, K取代MgAlO弱碱位OH上的质子形成弱碱性的Mg(Al)-O-K; 与强碱位表面O2-结合形成强碱性的Mg-O-K. 当K负载量为5%-8%(w)时, 还存在与载体作用较弱并具有更强碱性的准自由KOx. K增强MgAlO碱性的本质是K的电荷转移到了表面氧负离子上.  相似文献   

2.
In situ Fourier transform infrared (FTIR) spectroscopy was employed to characterize the adsorption behavior (as a function of pressure or time) and surface species of CO2 molecules on pure, phosphated, and phosphonated CaO. Carbonate and bicarbonate species were found to form on the pure oxide, whereas on the phosphated and phosphonated oxide samples the carbonate species were found to substitute favorably some of the OH(-) and PO4(3-) groups thereon exposed, respectively. Before and after carbonation, the test samples were further examined by in situ FTIR spectroscopy of adsorbed pyridine species, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Then they were in situ acidified by exposure to a wet atmosphere of HCl vapor at 673 K for 10 min and re-examined similarly to reveal the influence of CO2 adsorption on the chemical and morphological consequences of acidification. The results obtained show the carbonate substitution of PO4(3-) groups to enhance agglomeration of the otherwise fine, longitudinal material particles into much bulkier ones and to render the otherwise more stable phosphonate groups less stable to acid treatment than the phosphate groups. Moreover, the bulky particle agglomerates of the carbonated test samples were detectably eroded following the acid treatment.  相似文献   

3.
用共沉淀法制备了一组不同组成的MnxCo3-xO4尖晶石型复合氧化物,表面负载碱金属助剂制备改性催化剂,用于催化分解N2O.用X射线衍射(XRD)、N2物理吸附(BET)、红外光谱(FTIR)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等技术表征催化剂结构.考察了复合氧化物组成、碱金属助剂类型、钾前驱物等制备参数对催化剂结构和催化活性的影响.结果表明:添加助剂K、Cs降低了催化剂表面Co、Mn元素的电子结合能,弱化了Co—O和Mn—O键,有利于氧物种的脱除,提高了催化剂活性.优化出了活性较高的催化剂K/Mn0.4Co2.6O4(K2CO3),有氧无水、有氧有水气氛400℃连续反应50 h,N2O转化率分别保持100%和74.2%,催化剂稳定性较高.  相似文献   

4.
Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K.  相似文献   

5.
Activation of Au/TiO2 catalyst for CO oxidation   总被引:2,自引:0,他引:2  
Changes in a Au/TiO(2) catalyst during the activation process from an as-prepared state, consisting of supported AuO(x)(OH)(4-2x)(-) species, were monitored with X-ray absorption spectroscopy and FTIR spectroscopy, complemented with XPS, microcalorimetry, and TEM characterization. When the catalyst was activated with H(2) pulses at 298 K, there was an induction period when little changes were detected. This was followed by a period of increasing rate of reduction of Au(3+) to Au(0), before the reduction rate decreased until the sample was fully reduced. A similar trend in the activation process was observed if CO pulses at 273 K or a steady flow of CO at about 240 K was used to activate the sample. With both activation procedures, the CO oxidation activity of the catalyst at 195 K increased with the degree of reduction up to 70% reduction, and decreased slightly beyond 80% reduction. The results were consistent with metallic Au being necessary for catalytic activity.  相似文献   

6.
IR spectroscopy of adsorbed probe molecules (CO, pyridine) is used to characterize the acidic properties of sulfated zirconia derived from zirconium oxide and hydroxide. Their acidic properties are found to be similar. The strength of the Lewis and Brönsted site measured by the frequency shift of adsorbed CO is lower than that in zeolites. It is concluded that sulfated zirconia have no superacid Brönsted and Lewis sites. Brönsted sites capable of protonating pyridine vanish when calcining the catalysts at temperature above 773 K, but the strength and concentration of the Lewis acid sites (LAS) do not change.  相似文献   

7.
The present study illustrates the importance of the oxidation state of iron within the mesoporous iron trimesate [{Fe(3)O(H(2)O)(2)F(0.81)(OH)(0.19)}{C(6)H(3)(CO(2))(3)}(2)] denoted MIL-100(Fe) (MIL= Material from Institut Lavoisier) during adsorption of molecules that can interact with the accessible metal sites through π-back donation. Adsorption of CO has been first followed by FTIR spectroscopy to quantify the Lewis acid sites in the dehydrated Fe(III) sample, outgassed at 150 °C, and on the partially reduced Fe(II/III), outgassed at 250 °C. The exposure of MIL-100(Fe) to CO(2), propane, propene and propyne has then been studied by FTIR spectroscopy and microcalorimetry. It appears that π-back donating molecules are strongly adsorbed on reduced iron(II) sites despite the weaker Lewis acidity of cus Fe(2+) sites compared to that of Fe(3+) ones, as shown by pyridine adsorption.  相似文献   

8.
《天然气化学杂志》2012,(4):452-458
A series of CaO samples were prepared by calcination of commercially available and synthesis of calcium salt precursors such as calcium acetate,carbonate,hydroxide and oxalate etc.CaO samples were found to be effective for the epoxidation of styrene using hydrogen peroxide as an oxidant in the presence of acetonitrile.To determine the influence of the physicochemical properties and surface basicity on the catalytic activity,the prepared CaO samples were characterized using thermogravimetry(TG),X-ray diffraction(XRD),scanning electron microscopy(SEM),N2-adsorption and temperature-programmed desorption of CO2(CO2-TPD).The results indicate that the amounts of very strong basic sites and high basicity strength on CaO sample are key factors for its excellent catalytic performance.In contrast,the surface area,porosity and the surface structure of CaO sample have a relatively minor effect on the catalytic activity.CaO sample,obtained by the decomposition of Ca(OH)2,prepared by precipitating calcium nitrate with sodium hydroxide in ethylene glycol solution,exhibits the highest amount of very strong basic sites and stronger strength of basic sites,and therefore it catalyses the epoxidation of styrene with the highest rate among the tested CaO samples.Under the selected reaction conditions,the selectivity of 97.5% to styrene oxide at a conversion in excess of 99% could be obtained.  相似文献   

9.
采用机械混合法和共沉淀法制备了CaO改性CuZnAlZr氧化物催化剂,在高压微型固定床反应器上考察了其在合成气制低碳醇反应中的催化性能,利用粉末X射线衍射(XRD)、低温氮气吸附-脱附、H2程序升温还原(H2-TPR)和二氧化碳吸附-脱附(CO2-TPD)等技术对催化剂进行了表征.结果显示:CaO改性对CuZnAlZr催化剂的织构性质没有明显的影响;但共沉淀法制备的CaO改性CuZnAlZr催化剂具有弱碱性和中等强度两种碱性中心,且有较多的碱中心数量;而未改性的CuZnAlZr催化剂只具有弱碱性中心.CO加氢反应结果表明:经共沉淀法制备的CaO改性CuZnAlZr催化剂对C2+醇的生成有明显的促进作用.  相似文献   

10.
固相研磨法是将不同量的活性组分掺入到介孔材料上的一种简单有效的方法.采用该法以焙烧脱模前后的SBA-15为载体分别制备了不同负载量的CuO-SBA-15吸附剂.利用X射线衍射(XRD)、N2物理吸附、傅里叶变换红外(FTIR)等方法表征了吸附剂的物理性质.通过原位红外技术考察了改性前后介孔材料表面羟基的变化.借助吡啶-原位傅里叶变换红外(py-FTIR)技术考察了吸附剂表面的酸类型及相对酸量.采用静态吸附实验评价了吸附剂对催化裂化(FCC)燃料油的吸附脱硫性能.结果表明:CuO是与SBA-15表面的Si―OH结合形成[Si-O-Cu-O-Si]交联从而达到分散的目的;以SBA-15介孔材料(APS)为载体能够有效抑制在焙烧过程中介孔材料表面羟基的缩合,且CuO负载量达到3mmo·lg-1时仍能够均匀分散在载体SBA-15上,而采用焙烧脱模的SBA-15(CS)为载体制备的CuO-SBA-15吸附剂却出现了活性组分团聚现象;吸附剂的酸性与脱硫性能均随着CuO的增加出现先增加后降低的趋势,当CuO负载量达到3mmo·lg-1时吸附剂具有最高的Lewis酸(L酸)酸量及最佳的脱硫性能;吸附剂的L酸酸量与其脱硫性能成正相关关系;另外吸附剂的L酸的形成是由于改性后Cu周围的电荷密度降低引起的.  相似文献   

11.
Sulfated zirconia (SZ) and sulfated zirconia promoted with 2 wt % manganese (MnSZ) or iron (FeSZ), all active in n-butane isomerization, were investigated using diffuse reflectance Fourier transform IR spectroscopy (DRIFTS). By adsorption of H(2) at 77 K or of n-butane at room temperature, it was found that the promoters neither enhance the Lewis nor the Br?nsted acid strength. SZ and promoted SZ do not exhibit higher acid strength than zeolites. In a batch experiment using 70 hPa of H(2), SZ did not react at 473 K. Reaction of H(2) with MnSZ produced water (band at 5242 cm(-1)) and a decrease in the sulfate groups (multiple bands). Heating of SZ in 10 hPa n-butane to 573 K caused total reduction of sulfate to H(2)S (2583, 2570 cm(-1)) and partial and total oxidation of butane to olefinic species (3062 cm(-1)), CO(2), and water. MnSZ and FeSZ reacted with n-butane already at 373 K; products of skeletal isomerization (methyne CH vibration at 2910 cm(-1)) were detected and sulfate groups were consumed. Rather than increasing the acidity, the promoters enhance the oxidation potential of sulfate and facilitate alkane activation via oxidative dehydrogenation.  相似文献   

12.
Manganese propane and manganese butane complexes derived from CpMn(CO)(3) were generated photochemically at 130-136 K with the alkane as solvent and characterized by FTIR spectroscopy and by (1)H NMR spectroscopy with in situ laser photolysis. Time-resolved IR spectroscopic measurements were performed at room temperature with the same laser wavelength. The ν(CO) bands in the IR spectra of the photoproducts in propane are shifted to low frequency with respect to CpMn(CO)(3), consistent with formation of CpMn(CO)(2)(propane). The (1)H NMR spectra conform to the criteria for alkane complexes: a high-field resonance for the η(2)-CH protons that shifts substantially on partial deuteration of the alkane and exhibits a coupling constant J(C-H) on (13)C-labeling of ca. 120 Hz. The NMR spectrum of each system exhibits two diagnostic product resonances in the high-field region for the η(2)-CH protons, corresponding to CpMn(CO)(2)(η(2)-C1-H-alkane) and CpMn(CO)(2)(η(2)-C2-H-alkane) isomers. Partial deuteration of the alkane at C1 results in characteristic strong isotopic perturbation of equilibrium of the η(2)-CH resonance of CpMn(CO)(2)(η(2)-C1-H-alkane). With propane-(13)C(1), the η(2)-CH resonance of CpMn(CO)(2)(η(2)-C1-H-alkane) isomer exhibits (13)C satellites with J(C-H) = 119 Hz. The corresponding resonance of CpMn(CO)(2)(η(2)-C2-H-alkane) is identified by use of propane-2,2-d(2). The lifetimes of the (η(2)-C1-H-alkane) isomers of the manganese complexes were determined by NMR spectroscopy as 22 ± 2 min at 134 K (propane) and 5.5 min at 136 K (butane). The corresponding spectra and lifetimes of the CpRe(CO)(2)(alkane) complexes were measured for reference (CpRe(CO)(2)(propane) lifetime ca. 60 min at 161 K; CpRe(CO)(2)(butane) 13 min at 171 K). The lifetimes determined by IR spectroscopy were similar to those determined by NMR spectroscopy, thereby supporting the assignments. These measurements extend the range of alkane complexes characterized by NMR spectroscopy from rhenium and rhodium derivatives to include less stable manganese derivatives.  相似文献   

13.
The system termed 58S is a sol-gel-synthesized bioactive glass composed of SiO2, CaO, and P2O5, used in medicine as bone prosthetic because, when immersed in a physiological fluid, a layer of hydroxycarbonate apatite is formed on its surface. The mechanism of bioactive glass 58S carbonation was studied in the vacuum by means of in-situ FTIR spectroscopy with the use of CO2, H2O, and CD3CN as probe molecules. The study in the vacuum was necessary to identify both the molecules specifically involved in the carbonation process and the type of carbonates formed. Bioactive glass 58S was compared to a Ca-doped silica and to CaO. On CaO, ionic carbonates could form by contact with CO2 alone, whereas on 58S and on Ca-doped silica carbonation occurred only if both CO2 and an excess of H2O were present on the sample. The function of H2O was not only to block surface cationic sites, so that CO2 could not manifest its Lewis base behavior, but also to form a liquid-like (mono)layer that allowed the formation of carbonate ions. The presence of H2O is also supposed to promote Ca2+ migration from the bulk to the surface. Carbonates formed at the surface of CaO and of Ca-bearing silicas (thus including bioactive glasses) are of the same type, but are produced through two different mechanisms. The finding that a water excess is necessary to start heavy carbonation on bioactive glasses seemed to imply that the mechanism leading to in-situ carbonation simulates, in a simplified and easy-to-reproduce system, what happens both in solution, when carbonates are incorporated in the apatite layer, and during sample shelf-aging.  相似文献   

14.
The relative activities of a low-surface crystalline and high-surface amorphous LaOCl, further denoted as S1 and S2, have been compared for the destructive adsorption of CCl4. It was found that the intrinsic activity of S2 is higher than that of S1. Both samples were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2-physisorption, and Raman and infrared (IR) spectroscopy. IR was used in combination with CO2, CO, and methanol as probe molecules. The CO2 experiments showed that different carbonate species are formed on both materials. For S1, a high surface concentration of bidentate carbonate species and a lower concentration of monodentate carbonate were observed. In the case of S2, bulk carbonates were present together with bridged carbonates. CO adsorption shows that S2 and S1 have very similar Lewis acid sites. However, methanol adsorption experiments showed that S2 had a higher number of stronger Lewis acid sites than S1 and that twofold coordinated methoxy species were more strongly bound than threefold coordinated methoxy species. Because of the analogy between methanol dissociation and the removal of the first chlorine atom in the destructive adsorption of CCl4, the sites enabling twofold coordination were likely to be the same Lewis acid sites actively involved in the destructive adsorption of CCl4. La2O3 was less active than the two LaOCl materials, and therefore, the intrinsic activity of the catalyst increases as the strength of the Lewis acid sites increases. S2 contains more chlorine at the surface than S1, which is expressed by the higher number of sites enabling twofold coordination. Moreover, this explains the difference in destructive adsorption capacity for CCl4 that was observed for the samples S1 and S2. Since LaCl3, being the most acidic phase, is not active for the destructive adsorption of CCl4, basic oxygen atoms, however, remain needed to stabilize the reaction intermediate CCl3 as La-O-CCl3.  相似文献   

15.
The N-carboxyimidazolidone anion, 2(-), was prepared as an analogue for N(1)-carboxybiotin, and the kinetics of its CO(2)-dependent chemistry were studied in polar aprotic media. The objective was to assess the viability of unimolecular CO(2) elimination from N(1)-carboxybiotin as a microscopic step in biotin-dependent carboxyl transfer enzymes. The anionic 2(-) was prepared as its lithium salt by first deprotonating 2-imidazolidone with phenyllithium, followed by direct reaction with carbon dioxide. This procedure also permitted isolation of the (13)C enriched derivative 2(-)[(13)C] by reaction with (13)CO(2). Proton and (13)C NMR and isotope-dependent FTIR measurements confirmed that carboxylation had occurred at the nitrogen atom of 2-imidazolidone to give 2(-). Time-dependent FTIR spectroscopy showed that Li2 undergoes carboxyl exchange with free carbon dioxide, with kinetics indicative of rate-limiting unimolecular dissociation of the N-CO(2) bond. Under these conditions, the weak Lewis acid Mg(2+) catalyses the exchange of 2(-) with free CO(2), which appears to be related to the ability of the metal ion to coordinate to 2(-). Reaction of Li2 with carboxylic acids in DMSO results in acid-dependent decarboxylation of 2(-) with a rate that is dependent on the concentration of the acid and its pK(a). A common mechanistic framework is presented for both Lewis acid catalyzed carboxyl exchange and acid-dependent decarboxylation that involves initial interaction at the carbonyl oxygen and which has the effect of polarizing the nitrogen lone pair toward the imidazolidone ring rather than the carboxyl group. Lewis acid interaction with the carbonyl oxygen thus weakens the N-CO(2)(-) bond and functions as a trigger for dissociation of CO(2). In the context of biotin-dependent enzymes, this suggests a means by which the kinetically stable N(1)-carboxybiotin cofactor intermediate might be triggered for dissociation of CO(2).  相似文献   

16.
CO adsorption at low temperature has been used to probe Lewis acid sites created upon dehydroxylation of γ-Al2O3 and reduction of Mo/Al2O3 catalysts, using Fourier Transform Infrared spectroscopy (FTIR). Carbon-monoxide adsorption on γ-Al2O3 and Mo/Al2O3 catalysts dehydroxylated and reduced at different temperatures was studied at 78 K by IR spectroscopy. However, our results indicate that there is an approximately linear correlation between the increase either of dehydroxylation or the extent of reduction of the catalysts and the increasing absorbance of CO due to CO adsorption on Lewis acid sites created upon dehydroxylation of γ-Al2O3 and reduction of Mo/Al2O3.  相似文献   

17.
Conventional heating method and hydrothermal method were used for the synthesis of CaO nanoparticles and CaO/MgO nanocomposites under solvent control conditions. Ca(NO3)2 and Mg(NO3)2 were used as precursors, amyl alcohol as surface directing agent and NaOH as source of OH?. Different samples of CaO were prepared by conventional heating method in order to investigate the effect of calcination temperature and stirring time. Similarly two different kinds of sets of CaO as well as of CaO/MgO were synthesized under hydrothermal conditions for the investigation of effect of solvent and temperature on catalytic efficiency. Characterizations of these samples were carried out by Powder X-ray Diffractions (XRD), Thermo Gravimetric Analysis (TGA), Field Emission Scanning Electron Microscope (FESEM) Energy dispersive X-ray (EDX) and Fourier Transformed Infrared spectroscopy (FTIR). The synthesized samples of CaO and CaO/MgO were used to degrade methylene blue under UV-Visible conditions, which is an organic pollutant of waste from industries and causing serious health problems. First order data for degradation for methylene blue at λmax = 665 nm was used to quantify the degradation. Effect of solvent was found to be prominent in all samples. Similarly effect of temperature variation was also pronounced on catalytic efficiency as indicated by value of k.  相似文献   

18.
采用溶胶-凝胶法制备CaO-P2O5-SiO2-Na2O-B2O3体系前驱体粉末,用CaF2替代部分CaO再次制备前驱体粉末。 通过TG-DSC分析确定结晶温度为865 ℃,经过热处理获得主晶相为Na6Ca3Si6O18的玻璃陶瓷。 通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)等技术手段及体外生物活性实验分析玻璃陶瓷的显微结构及性能。 结果表明,CaF2的加入能提高玻璃陶瓷的体积密度、抗折强度和弹性模量,并且不会破坏玻璃陶瓷的生物活性。  相似文献   

19.
Highly active catalysts for oxidative dehydrogenation of ethane with CO2 were characterized by temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), Fourier transform infrared (FTIR) spectroscopy, and X-ray absorption fine-structure (XAFS) analysis. In the active catalysts, Cr/H-ZSM-5 (SiO2/Al2O3 > 190), Cr6+ = O, or possibly Cr5+ = O was the catalytic species on the zeolite support. In contrast, little Cr6+ (or Cr5+) was detected in the less-active catalysts. The Cr6+ (or Cr5+) species was reduced to an octahedral Cr3+ species by treatment with ethane at 773 K, and the reduced Cr species was reoxidized to the Cr6+ (or Cr5+) species by treatment with CO2 at 673-773 K. The Cr redox cycle played an important role in the catalyst's high activity.  相似文献   

20.
The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Br?nsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Br?nsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号