首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Organic functionalization of carbon nanotube sidewalls is a tool of primary importance in material science and nanotechnology, equally from a fundamental and an applicative point of view. 1 , 2 Here, an efficient and versatile approach for the organic/organometallic functionalization of single‐walled carbon nanotubes (SWCNTs) capable of imparting multimodality to these fundamental nanostructures, is described. Our strategy takes advantage of well‐established Cu‐mediated acetylene‐azide coupling (CuAAC) reactions applied to phenylazido‐functionalized SWCNTs for their convenient homo‐/heterodecoration with a number of organic/organometallic frameworks, or mixtures thereof, bearing terminal acetylene pendant arms. Phenylazido‐decorated SWCNTs were prepared by chemoselective arylation of the CNT sidewalls with diazonium salts under mild conditions, and subsequently used for the copper‐mediated cycloaddition protocol in the presence of terminal acetylenes. The latter reaction was performed in one step by using either single acetylene derivatives or equimolar mixtures of terminal alkynes bearing either similar functional groups (masked with orthogonally cleavable protecting groups) or easily distinguishable functionalities (on the basis of complementary analytical/spectroscopic techniques). All materials and intermediates were characterized with respect to their most relevant aspects/properties by TEM microscopy, thermogravimetric analysis coupled with MS analysis of volatiles (TG‐MS), elemental analysis, cyclic voltammetry (CV), Raman and UV/Vis spectroscopy. The functional loading and related chemical grafting of both primary amino‐ and ferrocene‐decorated SWCNTs were spectroscopically (UV/Vis, Kaiser test) and electrochemically (CV) determined, respectively.  相似文献   

2.
A complementary double‐covalent functionalization of single‐wall carbon nanotubes (SWCNTs) that involves both solubilizing ionic liquids and electroactive moieties is reported. Our strategy is a simple and efficient methodology based on the stepwise functionalization of the nanotube surface with two different organic moieties. In a first instance, oxidized SWCNTs are amidated with ionic liquid precursors, and further treated with n‐butyl bromide to afford SWCNTs functionalized with 1‐butylimidazolium bromide. This approach allows tuneable polarity induced by anion exchange, which has an effect on the relative solubility of the modified SWCNTs in water. Subsequently, a 1,3‐dipolar cycloaddition reaction was performed to introduce the electron‐acceptor 11,11,12,12‐tetracyano‐9,10‐anthra‐para‐quinodimethane (TCAQ) unit on the SWCNTs. Furthermore, to evaluate the influence of the functional group position, the TCAQ electroactive molecule was anchored through an esterification reaction onto previously oxidized SWCNTs, followed by the Tour reaction to introduce the ionic liquid functions. IR and Raman spectroscopies, thermogravimetric analysis (TGA), UV/Vis/NIR spectroscopy, transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS) were employed and clearly confirmed the double‐covalent functionalization of the SWCNTs.  相似文献   

3.
《Electrophoresis》2017,38(13-14):1669-1677
We demonstrate the separation of chirality‐enriched single‐walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high‐performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality‐enriched SWCNTs through covalent functionalization using 4‐carboxybenzenediazonium tetrafluoroborate or 4‐diazo‐N,N‐diethylaniline tetrafluoroborate, respectively. Surfactant‐ and pH‐dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single‐chirality‐enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single‐chirality SWCNTs by functional density was confirmed with UV‐Vis‐NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality‐enriched samples, and show the feasibility of applying CE for high‐performance separation of nanomaterials based on differences in surface functional density.  相似文献   

4.
Surface functionalization of CNTs (SWCNTs or MWCNTs) with dendronized alkoxy terpyridine‐Ru(II)‐terpyridine complexes has been accomplished using either the “grafting to” or the “grafting from” approaches. Different sets of easily processable hybrid metallo‐CNTs composites have been efficiently synthesized bearing either monomeric or polymeric side chain tpy‐Ru(II)‐tpy dicomplexes. Their characterization through TGA, UV‐Vis, and Raman techniques revealed various modification degrees depending on the methodology employed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2551–2559, 2009  相似文献   

5.
Noncovalent functionalization of carbon nanotubes (CNTs) by dendrons was demonstrated. Certain types of dendrons successfully functionalized CNT surfaces through the noncovalent interactions between the peripheries of the dendrons and the sidewalls of CNTs. Dendrons have a unique anisotropic shape and an orthogonal functional group at their apex, and thus can generate a certain spacing between the functional groups upon immobilization on surfaces. Atomic force microscope (AFM) imaging, dispersion experiments, and MicroRaman spectroscopy were employed for the characterization of the functionalization. The binding was found to be governed by the chemical nature of the terminal groups, namely, the "fingertips", through a comparison study on the adsorption efficiency of the dendron analogs. Functional groups such as the carboxylic acid group and the benzyl amide group were effective for the cooperative binding. AFM analysis showed that the average spacing generated by the dendrons was 14-15 nm at a particular adsorption condition. Assembling streptavidin on the tubes through the dendrons and biotin confirmed the realization of the regulated spacing as well as the elimination of unwanted aggregation. The noncovalent functionalization of CNTs by a dendron can be a new approach toward sensible nanobiodevices, not only by introducing biomolecular probes on CNTs without disruption of the electronic network of the tubes, but also by providing the immobilized probe molecules with a space ample enough to minimize steric hindrance for the unhindered interaction with their target species.  相似文献   

6.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

7.
Defected carbon materials as a metal-free catalyst have shown superior stability and catalytic performance in the acetylene hydrochlorination reaction. Through density functional theory (DFT) calculations, for the first time, several different defected configurations comprising mono and divacancies and Stone Wales defect on single-walled carbon nanotubes (SWCNTs) have been used as a direct catalyst for acetylene hydrochlorination reaction. These defective sites on SWCNTs are the most active site for acetylene hydrochlorination reaction compare to pristine SWCNT. The different configurations of defects have different electronic structures, which specify that monovacancy defects have more states adjacent to the Fermi level. The reactant acetylene (C2H2) adsorbed strongly compared to hydrogen chloride (HCl) and expected to be the initial step of the reaction. Acetylene adsorbed strongly at monovacancy defected SWCNT compared to other investigated defects. Reaction pathway analysis revealed that mono- and divacancy defected SWCNTs have minimum energy barriers and show extraordinary performance toward acetylene hydrochlorination. This work suggests the potential of metal-free defected carbon in catalyzing acetylene hydrochlorination and provides a solid base for future developments in acetylene hydrochlorination.  相似文献   

8.
Localized solvent environments form around single-wall carbon nanotubes (SWCNTs) because of the ability of surfactant molecules to solubilize immiscible organic solvents. Although these microenvironments around SWCNTs have already been used for fundamental and applied studies, small-angle neutron scattering (SANS) was used here to assess the size and shape of the solvent domains, their uniformity and distribution on the sidewalls, and the effect of solvent swelling on the aggregation state of the suspension. SANS measurements confirm both the formation of local solvent environments and that no irreversible aggregation of the nanotube suspension occurs after the SDS molecules are swollen in solvent. The results also corroborate prior conclusions based on photoluminescence that the structure formed is dependent of the nature of the solvent-surfactant combination; SWCNTs suspended with SDS and swelled with benzene have a more uniform coating on the sidewall than those swelled with o-dichlorobenzene. These differences can be important to understanding the effect of the local environment on the photoluminescence properties and the interaction of SWCNTs with interfaces.  相似文献   

9.
Sequential addition of two different lithium acetylides to p-benzoquinone yielded diastereomeric mixtures of 1,4-diethynylcyclohexa-2,5-diene-1,4-diols wherein the two ethynyl groups bear different protective/functional groups. Selective deprotection to the terminal acetylene followed by Pd(0) mediated coupling with Z-1,2-dichloroethene yielded new enediynes bearing cyclohexa-2,5-diene units.  相似文献   

10.
Through a combination of an electronic‐type selective diazonium‐based attachment of a Hamilton receptor unit onto the carbon nanotube framework and a supramolecular recognition approach of a cyanuric acid derivative, we herein introduce a highly promising strategy for the tuning of carbon nanotube solubility and, directly related to that, a solution‐based easy and straightforward separation of covalently functionalized carbon nanotube derivatives with respect to their unfunctionalized counterparts. The supramolecular complexation of the cyanuric acid derivative provides the driving force for the dramatically increased dispersibility and for the long‐time stability of the individualized single‐walled carbon nanotube derivatives in chloroform. The selective covalent functionalization of metallic carbon nanotubes can easily be analyzed with the aid of scanning Raman microscopy techniques. The functional derivatives have furthermore been characterized by UV/Vis‐NIR and fluorescence spectroscopy as well as by mass spectrometric coupled thermogravimetric analysis. The investigation of the supramolecular complexation is based on an in‐depth UV/Vis‐NIR analysis and atomic force microscopy investigations.  相似文献   

11.
The efficient and controllable synthesis, the detailed characterization, and the chemical postfunctionalization of polycarboxylated single-walled carbon nanotubes SWCNT(COOH)(n) are reported. This innovative covalent sidewall functionalization method is characterized by (a) the preservation of the integrity of the entire σ-framework of SWCNTs; (b) the possibility of achieving very high degrees of addition; (c) control of the functionalization degrees by the variation of the reaction conditions (reaction time, ultrasonic treatment, pressure); (d) the identification of conditions for the selective functionalization of semiconducting carbon nanotubes, leaving unfunctionalized metallic tubes behind; (e) the proof that the introduced carboxylic acid functionalities can serve as versatile anchor points for the coupling to functional molecules; and (f) the application of a subsequent thermal degradation step of the functionalized semiconducting tubes leaving behind intact metallic SWCNTs. Functional derivatives have been characterized in detail by means of Raman, UV-vis/nIR, IR, and fluorescence spectroscopy as well as by thermogravimetric analysis combined with mass spectrometry, atomic force microscopy, and zeta-potential measurements.  相似文献   

12.
We have successfully applied coupled thermogravimetry, mass spectrometry, and infrared spectroscopy to the quantification of surface functional groups on single-walled carbon nanotubes. A high-purity single-walled carbon nanotube sample was subjected to a rapid functionalization reaction that attached butyric acid moieties to the nanotube sidewalls. This sample was then subjected to thermal analysis under inert desorption conditions. Resultant infrared and mass spectrometric data were easily utilized to identify the desorption of the butyric acid groups across a narrow temperature range and we were able to calculate the degree of substitution of the attached acid groups within the nanotube backbone as 1.7 carbon atoms per hundred, in very good agreement with independent analytical measurements made by inductively coupled plasma optical emission spectrometry (ICP-OES). The thermal analysis technique was also able to discern the presence of secondary functional moieties on the nanotube samples that were not accessible by ICP-OES. This work demonstrates the potential of this technique for assessing the presence of multiple and diverse functional addends on the nanotube sidewalls, beyond just the principal groups targeted by the specific functionalization reaction.   相似文献   

13.
Sidewall functionalization of single-walled carbon nanotubes (SWCNTs) via the addition of (R-)oxycarbonyl nitrenes allows for the covalent binding of a variety of different groups such as alkyl chains, aromatic groups, dendrimers, crown ethers, and oligoethylene glycol units. Such additions lead to a considerable increase in the solubility in organic solvents such as 1,1,2,2-tetrachloroethane (TCE), dimethyl sulfoxide (DMSO), and 1,2-dichlorobenzene (ODCB). The highest solubilities of 1.2 mg/mL were found for SWCNT adducts with nitrenes containing crown ether of oligoethylene glycol moieties in DMSO and TCE, respectively. The presence of chelating donor groups within the addends allowed for the complexation of Cu(2+) and Cd(2+). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) revealed that the functionalized tubes form thin bundles with typical diameters of 10 nm. The presence of thin bundles in solution is supported by (1)H NMR spectroscopy. The elemental composition of the functionalized SWCNT was determined by X-ray photoelectron spectroscopy (XPS). The use of Raman and electron absorption spectroscopy (UV/Vis-nIR) showed that the electronic properties of the SWCNTs are mostly retained after functionalization, indicating a low degree of addition within this series of SWCNT derivatives.  相似文献   

14.
Covalent addition reactions turned out to be one of the most important functionalization techniques for a structural alteration of single walled carbon nanotube (SWCNT) scaffolds. During the last years, several reaction sequences based on an electrophilic interception of intermediately generated SWCNT(n-) carbanions, obtained via Birch reduction or by a nucleophilic addition of organometallic species, have been developed. Nevertheless, the scope and the variety of potential electrophiles is limited due to the harsh reaction conditions requested for a covalent attachment of the functional entities onto the SWCNT framework. Herein, we present a significant modification of the reductive alkylation/arylation sequence, the so-called Billups reaction, which extends the portfolio of electrophiles for covalent sidewall functionalization to carbonyl compounds--ketones, esters, and even carboxylic acid chlorides. Moreover, these carbonyl-based electrophiles can also be used as secondary functionalization reagents for anionic SWCNT intermediates, derived from a primary nucleophilic addition step. This directly leads to the generation of mixed functional SWCNT architectures, equipped with hydroxyl or carbonyl anchor groups, suitable for ongoing derivatization reactions. A correlated absorption and emission spectroscopic study elucidates the influence of the covalent sidewall functionalization degree onto the excitonic transition features of carbon nanotubes. The characterization of the different SWCNT adducts has been carried out by means of Raman, UV-vis/nIR, and fluorescence spectroscopy as well as by thermogravimetric analysis combined with mass spectrometry and X-ray photoelectron spectroscopy analysis.  相似文献   

15.
Abstract

Several telechelic compounds were prepared by terminal functionalization of poly(oxyethylene) diacid via the reaction of the carboxylic groups with different aromatic amines. Starting from the telechelic diacid, the corresponding diacid chloride was prepared with thionyl chloride after which the compound was allowed to react with aniline, 2-naphtylamine, and 2-aminoanthracene. The telechelic products were characterized by UV/Vis, 1H-NMR, 13C-NMR, and IR spectroscopy. The UV/Vis spectrometric data were compared to those of the corresponding amines. In addition, refractive indices and solubility characteristics were also determined. In addition, the spectroscopic data were compared with respect to increasing terminal chain extension by the three aromatic compounds.  相似文献   

16.
Single‐walled carbon nanotubes (SWNTs) possess extraordinary properties, but suffer from poor solubility and a lack of purity. Of the possible routes available to solubilize and purify nanotube samples, the use of noncovalent functionalization is ideal as carbon nanotube properties are not deleteriously affected. A multitude of different dispersants have been investigated thus far, but of particular interest is deoxyribonucleic acid (DNA), which has previously been demonstrated to effectively separate metallic and semiconducting carbon nanotubes. Here, we investigate the ability of synthetic nucleobase‐containing poly(acrylamide) polymers to produce stable nanotube dispersions in organic solvents. Polymers bearing different nucleobase and backbone structures, as well as block copolymers with different block sequences were investigated. Polymer:SWNT mass ratios and solvent compositions were optimized for the nucleobase‐functionalized polymers, and semiconducting and metallic SWNT populations were identified by a combination of UV‐Vis‐NIR absorption, Raman, and fluorescence spectroscopy. These results demonstrate the capacity for synthetic DNA analogues to disperse SWNTs in organic media. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2611–2617  相似文献   

17.
We have exploited the reactivity of antiaromatic boroles, gaining access to aryl‐substituted monocyclic 1,2‐azaborinines. The observed ring‐expansion reaction of inherently electron‐deficient boroles with organometallic and organic azides is demonstrated for representative examples. This substance class is expected to provide a new avenue into 1,2‐azaborinine chemistry, especially in the area of functional organoboron materials. Our results are based on NMR and UV/Vis spectroscopy as well as single‐crystal X‐ray crystallography and provide a virtually quantitative approach that also offers numerous points of variation.  相似文献   

18.
An ozonolysis protocol has recently been developed that cannot only purify nanotubes but also achieve rational spatial and molecular control over chemical derivatization in single-walled carbon nanotubes (SWCNTs). Ozonolysis likely opens end caps and introduces holes into the sidewalls of tubes, which may occur through an oxidation of carbon atoms located on the nanotube surface, resulting in the formation of oxygen-containing functional groups. Overall, it was demonstrated by analysis of nitrogen adsorption and TGA/DTG that the total surface area, micropore volume, and mesopore volume of SWCNTs depend on several, intertwined factors including the degree of purity, surface functionality, density of surface groups, as well as the state of aggregation of the carbon tubes. Hydrogen bonding in these systems plays a role too. Data suggest that complete removal of surface functionalities would lead to a greater total surface area and higher micropore volume.  相似文献   

19.
Ultraviolet (UV) irradiation of single wall carbon nanotubes (SWCNTs) individually dispersed in surfactants leads to diameter and type-selective photohydroxylation of the nanotubes. Photohydroxylation of first semiconductor and then small diameter metallic SWCNTs was confirmed after 254 nm UV irradiation in acidic, neutral, and basic aqueous solutions at ambient and elevated temperatures. The increased oxygen content of the SWCNTs after UV irradiation, as detected by X-ray photoelectron spectroscopy, suggests that SWCNTs were hydroxylated by reaction with water. Attenuated total reflectance Fourier transform infrared analysis provides evidence of hydroxyl functional groups on their surface. This photochemical reaction is impeded by molecular oxygen and appears to involve a reactive intermediate generated in the vicinity of semiconducting SWCNTs. This represents a noncontaminating selective reaction in the liquid phase that uses an intrinsic property of the tubes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号