首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沉淀法合成蓝色长余辉发光材料Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)   总被引:1,自引:0,他引:1  
采用沉淀法制备了高亮度的长余辉发光材料Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+).通过XRD、荧光光谱和热释光谱对其进行表征.XRD测试表明所制备的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+),四方晶.荧光光谱测试表明,λ_(em)=467 nm作为监控波长,在275~450 nm之间有宽的激发光谱,峰值位于399 nm.用λ=399 nm激发样品,其发射光谱为一宽带,峰值位于467 nm.1050℃煅烧前躯体所制备的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)发光性能最好.热释光谱峰值位于357 K,适合长余辉现象的产生.对Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)长余辉发光机理进行了讨论.  相似文献   

2.
蓄光发光材料SrAl2O4:Eu2+,Dy3+及其常温磷光光谱分析   总被引:2,自引:0,他引:2  
组成为SrAl_2O_4:Eu~(2+),Dy~(3+)的稀土铝酸锶系蓄光发光材料(也称为超长余辉发光材料)是目前已开始广泛应用的第三代产品。该材料基质中的二价稀土铕离子Eu~(2+)作为发光中心,能够吸收波长为480nm以下的可见光和紫外光,发出波长为520nm的  相似文献   

3.
采用微波等离子体法合成SrAl_2O_4:Eu~(2+),Dy~(3+)长余辉发光材料,通过对掺杂不同激活剂浓度的产物的光谱性能、余辉性能、相组成结构的分析以及晶胞常数的计算,探讨了微波等离子体法合成srAl_2O_4:Eu~(2+),Dy~(3+)时,激活剂Eu~(2+)的浓度猝灭特性.XRD测试结果表明,Eu~(2+)离子的掺入对基质晶格畸变影响很小;光谱和余辉性能测试表明Eu~(2+)的掺杂浓度对产物的瞬时发光强度影响较大,相对而言对余辉性能的影响程度不大.产物的发光性能随Eu~(2+)摩尔浓度的增大呈现先增强后减弱的趋势,发光中心Eu~(2+)离子的猝灭浓度为4%.结合EDX结果说明,与高温固相法以及其他一些方法相比,采用微波等离子体合成技术可在一定程度上提高Eu~(2+)离子的临界猝灭浓度,从而为进一步提高长余辉发光材料的发光性能提供了可能.  相似文献   

4.
SrO—Al2O3—SiO2:Eu^3+,Bi^3+发光体的溶胶—凝胶法合成   总被引:2,自引:1,他引:2  
李彬  白玉白 《应用化学》1990,7(1):76-79
制备无机固体材料大都采用高温固相反应,1971年Dislich报导了用溶胶-凝胶法制备多组份固体材料。近年来,有报导利用此法研制玻璃、玻璃陶瓷和陶瓷。我们在过去工作的基础上,合成了SrO-Al_2O_3-SiO_2:Eu~(3 ),Bi~(3 )发光体,研究了从凝胶至发光晶体的转变过程、Eu~(3 )和Bi~(3 )在SrO-Al_2O_3-SiO_2基质中的发光性质以及Bi~(3 )对 EU~(3 )的能量传递。  相似文献   

5.
实验通过传统的高温固相合成法合成了一系列的NaSr_4B_3O_((9-3x/2))N_x:Eu~(2+)红色荧光粉。NaSr_(3.98)B_3O_((9-3x/2))N_x:Eu~(2+)荧光粉具有立方相晶体结构,空间群为Ia-3d,其结构内拥有两个不同配位的发光中心分别为八配位和六配位。NaSr_(3.98)B_3O_((9-3x/2))N_x:Eu~(2+)荧光粉的激发光谱可以与近紫外LED芯片很好地符合,由于Eu~(2+)离子的4f65d1→4f7能级跃迁,使得NaSr_4B_3O_((9-3x/2))N_x:Eu~(2+)荧光粉表现出发光中心位于610 nm附近的红色宽带发射,半高宽约为110 nm。NaSr_(3.99)B_3O_(8.1)N_(0.6):0.02Eu~(2+)荧光粉的最佳掺N浓度为x=0.8,其寿命在两个不同的发光中心的平均衰减时间分别为603和510 ns。在y=0.02时,NaSr_(4-y)B_3O_(8.1)N_(0.6):yEu~(2+)荧光粉的发射光谱发生了浓度猝灭现象,计算得到其激活剂离子间的临界距离为2.712 nm,导致浓度猝灭的激活剂离子之间的相互作用的方式为偶极子-偶极子。以上结果表明,NaSr_4B_3O_((9-3x/2))N_x:Eu~(2+)荧光粉有望成为白光LED的光色转换材料。  相似文献   

6.
本文对长余辉材料SrAl_2O_4:Eu~2+,Dy~3+在较低气体压力(0~300000 Pa)影响下的余辉强度变化情况进行了系统地研究,发现对于相同的气体压力,余辉亮度的响应情况随加压时间点的改变不同,且在100~260 s之间灵敏度随开始时间的延后而增加,具有较好的规律性.在0~300000 Pa压力范围内SrAl_2O_4:Eu~2+,Dy~3+的余辉强度变化情况与气体压力变化值线性相关且灵敏度较高.我们认为,SrAl_2O_4:Eu~2+,Dy~3+作为新型压敏发光材料在非接触测压领域具有良好的应用前景.  相似文献   

7.
Y_2O_2S:Eu~(3+)空心微球的制备与性能   总被引:2,自引:0,他引:2  
以单分散的碳球为硬模板,采用均匀共沉淀法合成了Y_2O_2S:Eu~(3+)心微球.通过XRD、SEM、TEM、荧光光谱对其进行表征.X射线衍射测试表明所制备的Y_2O_2S:Eu~(3+)空心微球为单相,六方晶.扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试表明所制备的Y_2O_2S:Eu~(3+)空心微球粒径小,分布均匀.激发和发射光谱测试表明Eu~(3+)离子能有效地掺入硫氧化钇基质中,并具有良好的发光性能.  相似文献   

8.
采用高温固相法合成了具有高热稳定性的Ca_2Y_8(SiO_4)_6O_2:Eu~(3+)红色荧光粉。通过X射线衍射和扫描电子显微镜对样品的结构和形貌进行了系统地表征,结果表明成功地合成了Ca_2Y_8(SiO_4)_6O_2:Eu~(3+)荧光粉。在394 nm激发下,样品发出很强的红光,该发射来自于Eu~(3+)的5D~0→~7F_J(J=1, 2, 3, 4)。通过变温光谱分析了样品在303~563 K温度范围的热稳定性。随着温度的升高, Ca_2Y_8(SiO_4)_6O_2:0.3Eu~(3+)样品的发光先增强后减弱,在483 K时的发光最强为室温时的1.5倍。将Ca_2Y_8(SiO_4)_6O_2:0.3Eu~(3+)样品与蓝色荧光粉BaMgAl_(10)O_(17):Eu~(2+)和绿色荧光粉BaSiO_4:Eu~(2+)以及近紫外LED芯片(395 nm)进行封装,在不同电流激发下(20~140 mA),均获得了显色指数高于92,色温低于4000 K的暖白光。以上结果表明Ca_2Y_8(SiO_4)_6O_2:Eu~(3+)在白光LED领域具有非常好的潜在应用。  相似文献   

9.
用离子交换法制备了碱金属M~+(M~+=Li~+、Na~+、K~+)或碱土金属M~(2+)(M=Ca~(2+))与稀土离子Eu~(2+)混合的β″-Al_2O_3片状陶瓷。性能测定表明,它们为在中温区具有Eu~(2+)快离子导电性;在紫外光激发下,发射较强绿光的多功能材料。光谱分析表明,在β″-Al_2O_3中Eu~(2+)可以占据两种位置形成两种发光中心EuⅠ和EuⅡ,其形成情况由M~+、M~(2+)与Eu~(2+)的特性共同决定,还与离子交换是否平衡有关。Eu~(2+)的最大发射波长受M~+或M~(2+)的电负性以及β″-Al_2O_3中间层的厚度影响。  相似文献   

10.
采用高温固相法制备Ca_(1-x)Al_(2+x)Si_2O_8:12%(摩尔分数)Eu~(3+)荧光粉,在紫外激发下得到红色与蓝色混合系列发光材料。通过调控Ca和Al的比例,结果显示:当x=0.3,即Ca_(0.7)Al_(2.3)Si_2O_8:Eu~(3+)为此发光材料的最佳比例,在λ_(ex)=296 nm激发下Eu~(3+)发光强度最大,λ_(ex)=319 nm激发下Eu~(2+)发光强度最大。有趣的是,在Eu~(3+)的五个特征峰中~5D_0→~7F_4(682 nm)的强度在之前的研究中没有出现与~5D_0→~7F_2(614 nm)相接近,但在我们的实验中观察到在296和319 nm激发下,~5D_0→~7F_4的发光强度与~5D_0→~7F_2已非常接近。通过监测682 nm与614 nm处的荧光寿命分别为1.99和1.84 ms,得出它们属于一个发光中心。通过色坐标的测量,此样品在蓝光区与红光区可进行调节,因此这种材料作为白光LED中的蓝色与红色荧光粉存在潜在的应用前景。  相似文献   

11.
用电子自旋共振波谱和荧光光谱研究BaFCl:Eu中铕的价态   总被引:3,自引:1,他引:3  
BaFCl:Eu是一种优良的X射线发光材料,最近我们发现:虽然它的发光起源于Eu~(2+)离子的4f~65d→4f~7能级间的电子跃迁;但是晶体中同时存在的Eu~(3+)离子的电荷转移跃迁对发光有很明显的增强作用。因此在研究Eu~(2+)和Eu~(3+)离子在发光过程中的作用时,必须首先要知道它们在发光材料中的浓度。我们提出了一种准确测定BaFCl:Eu中Eu~(2+)和Eu~(3+)离子含量的方法。这种方法是依据Eu~(2+)离子的电子自旋共振(ESR)波谱以及Eu~(2+)和Eu~(3+)离子的发光光谱。我们合成了一系列含有不同Eu~(2+)/Eu~(3+)浓度比的BaFCl:Eu,并初步讨论了它们的发光现象。  相似文献   

12.
(Sr,Ba)SiO_3:Eu~(3+)是以SrCO_3、BaCO_3、H_2SiO_3、Li_2CO_3、Eu_2(C_2O_4)_3为原料,经高温烧结而成。合成发光材料过程中,用正交试验法进行实验条件的探索。得到了发光材料的最佳组成为:(Sr_(0.8)Ba_(0.2))_(0.95)Eu_(0.025)Li_(0.025)SiO_3或Si_(0.95)Eu_(0.025)Li_(0.025)SiO_3。最佳实验条件为:灼烧温度1150℃,灼烧时间3小时。通过X-射线粉末衍射谱、激光荧光光谱、发光光谱和激发光谱研究了发光材料的结构和发光特性。  相似文献   

13.
铕激活的氟氯化钡是一种高效率的发光材料。Sommerdijk 等讨论过 MeFX:Eu~(2+)的发光。Tangue等报道过 MeFX:Eu~(2+)在低温下的发射光谱。Stevel等研究了 BaFX:Eu~(2+)在 X 射线激发下的发光性质。  相似文献   

14.
研究了Eu~(3+)在RE_2O_3·0.95P_2O_5·0.1SiO_2(RE=La,Gd)基质中的发光。它们的激发光谱包括Eu~(3+)的CTS和f—f跃迁引起的吸收,于254nm附近有强的吸收。另外Gd基质试样在274nm处有一锐线吸收,是由Gd~(3+)的~8S→~6I跃迁产生的,表明Gd~(3+)可以把吸收的274nm波长的能量传递给Eu~(3+)。发射光谱只包括~5D_0→~7F_(0,1,2,3,4)跃迁的窄带谱。讨论了Eu~(3+)在La-Gd基质二元体系中的发光。随着Gd~(3+)含量的变化,可引起发射峰相对强度、CTS能量和发光亮度的连续变化。同时本文对Gd基质中Bi~(3+)通过Gd~(3+)的中间作用向Eu~(3+)传递能量进行了初步讨论。  相似文献   

15.
在实验室中,采用溶胶-凝胶法,在1000℃的温度下,合成出组成为2.692MgO-1.2Al_2O_3-4SiO_2:0.045Eu~(3+),0.009Bi~(3+)(加入Li~+作为电荷补偿剂)发光体。利用红外光谱,X射线粉末衍射、热重及差热分析研究了由凝胶至发光晶体的转变过程。采用岛津RF-540荧光分光光度计,在室温下测量了发光体的激发光谱和发光光谱。讨论了发光体的发光特性及Bi~(3+)对Eu~(3+)的敏化作用。  相似文献   

16.
研究了激活离子Eu~(3 ),Dy~(3 )和Bi~(3 )在具有相同结构的LaMSb_2O_7(M=Li,Na,K)中的发光特性,得到了发白光的磷光体LaNaSb_2O_7:Dy~(3 )。讨论了化学键的共价程度对Eu~(3 )和Dy~(3 )超灵敏跃迁强度比的影响。发现当用281nm激发试样时,Bi~(3 )对Eu~(3 )具有敏化作用并解释了其原因。  相似文献   

17.
提出采用燃烧法合成Sr_3Al_2O_6:Eu~(2+),Dy~(3+)红色长余辉发光材料,旨在通过工艺优化合成出单相的铝酸锶基质,为制备发光性能良好的红色发光材料打下基础。通过对样品进行XRD衍射分析,分别探讨了燃烧温度、尿素添加量以及二次还原工序的引入对样品的物相组成的影响。结果表明:仅调节燃烧温度和尿素添加量不能得到单相Sr_3Al_2O_6基质,产物中往往存在SrAl_2O_4,Sr_4Al_2O_7等杂质相,然而当尿素添加量增加时,虽导致产生大量SrCO_3,但同时也抑制了很难排除的杂质相SrAl_2O_4,Sr_4Al_2O_7的生成。如将该样品在1200℃下还原煅烧则可使SrCO_3分解继而反应生成目标产物Sr_3Al_2O_6,由此获得接近纯相的Sr_3Al_2O_6基质。最终确定较优化的工艺条件为:燃烧温度为850℃,尿素添加量为硝酸盐的2倍,燃烧后在1200℃下进行二次还原煅烧。  相似文献   

18.
采用溶胶凝胶法制得高纯的B_2O_3-CaO∶Eu~(3+)荧光粉。用XRD、IR对不同退火温度下所得样品的结构进行表征,结果发现随退火温度的变化,能形成不同结构的硼酸盐基质。通过对以不同结构硼酸盐为基质荧光粉的激发、发射谱图及荧光衰减曲线的分析,探讨了材料的发光性能和发光机理。结果表明,在不同结构硼酸盐基质中,Eu~(3+)都处于无反演对称中心格位,以(5D0→7F2)电偶极跃迁为主,所以材料主要发红光;且900℃退火所得高纯相的CaB2O4基质最有利于发光、对应的荧光衰减时间最长,这都因在此荧光粉中Eu~(3+)更易取代Ca~(2+),并形成相对较多的p-n结和陷阱所致。  相似文献   

19.
具有窄带发射的无机发光材料既可协同提升照明器件的显色指数和流明效率(如窄带红色发光材料),也可增大液晶显示器件的色域(如窄带蓝色、绿色和红色发光材料),在照明和显示用发光二极管(light-emitting diodes, LED)器件中具有重要的应用前景。其中稀土发光材料中常用的Eu~(2+)和Ce~(3+)离子具有4f-5d跃迁,但由于晶体场效应而呈现不同程度的峰展宽效应,迄今为止,人们发现的Eu~(2+)和Ce~(3+)掺杂的窄带发射发光材料基质体系十分有限,特别是Eu~(2+)掺杂的新型窄带荧光粉研究是一项重要挑战。近年来,人们首先在Eu~(2+)掺杂UCr_4C_4基氮化物窄带荧光粉研究中取得了重要进展,发现了一系列具有潜在应用前景的窄带氮化物红光发射材料。而最近,本课题组在Eu~(2+)掺杂UCr_4C_4基窄带硅酸盐荧光粉研究领域获得了突破,基于此,概述了Eu~(2+)掺杂UCr_4C_4基窄带硅酸盐荧光粉的研究进展与应用,指出了UCr_4C_4基氮化物与硅酸盐的结构演变特征,并由此总结了几类UCr_4C_4基窄带硅酸盐化合物的结构特点和Eu~(2+)掺杂荧光粉的发光特性,进一步地对Eu~(2+)掺杂UCr_4C_4基窄带硅酸盐荧光粉的应用进行了介绍,指出了当前在调控其光色和提升其化学稳定性所面临的挑战和所做的一些有意义的尝试。最后对Eu~(2+)掺杂UCr_4C_4基氧化物窄带荧光粉的未来发展进行了展望。  相似文献   

20.
Eu~(2+)离子具有许多能量比较低的吸收带,因此在多种发光基体中都可作为有效的激活剂.Eu~(2+)离子激活的磷酸盐、硅酸盐,铝酸盐和硼酸盐等都是优良的荧光材料,其发射峰范围在350-575nm.Eu~(2+)离子激活的SrB_4O_7是其中一种重要的新型长波(A段)紫外灯用荧光材料,早已广泛地应用于工农业、公安、国防、环保及医疗卫生等领域.有关的新材料和新用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号