首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intramolecular circularization of DNA oligonucleotides was accomplished by incorporation of alkyne‐modified photolabile nucleosides into DNA sequences, followed by a CuI‐catalyzed alkyne–azide cycloaddition with bis‐azido linker molecules. We determined a range of ring sizes, in which the caged circular oligonucleotides exhibit superior duplex destabilizing properties. Specific binding of a full‐length 90 nt C10 aptamer recognizing human Burkitt's lymphoma cells was then temporarily inhibited by locking the aptamer in a bicircularized structure. Irradiation restored the native aptamer conformation resulting in efficient cell binding and uptake. The photo‐tether strategy presented here provides a robust and versatile tool for the light‐activation of longer functional oligonucleotides, noteworthy without prior knowledge on the structure and the importance of specific nucleotides within a DNA aptamer.  相似文献   

2.
By automated synthesis, we prepared hybrid oligonucleotides consisting of covalently linked RNA and p‐DNA sequences (p‐DNA=3′‐deoxyribopyranose (4′→2′)‐oligonucleotides) (see Table 1). The pairing properties of corresponding hybrid duplexes, formed from fully complementary single strands were investigated. An uninterrupted ππ‐stacking at the p‐DNA/RNA interface and cooperative pairing between the two systems was achieved by connecting them via a 4′‐p‐DNA‐2′→5′‐RNA‐3′ and 5′‐RNA‐2′→4′‐p‐DNA‐2′ phosphodiester linkage, respectively (see Fig. 4). The RNA 2′‐phosphoramidites 9 – 12 , required for the formation of the RNA‐2′→4′‐p‐DNA phosphodiester linkage were synthesized from the corresponding, 3′‐O‐tom‐protected ribonucleosides (tom=[(triisopropylsilyl)oxy]methyl; Scheme 1). Analogues of the flavin mononucleotide (=FMN) binding aptamer 22 and the hammerhead ribozyme 25 were prepared. Each of these analogues consisted of two p‐DNA/RNA hybrid single strands with complementary p‐DNA sequences, designed to substitute stem/loop and stem motifs within the parent compounds. By comparative binding and cleavage studies, it was found that mixing of the two complementary p‐DNA/RNA hybrid sequences resulted in the formation of the fully functional analogues 23 ⋅ 24 and 27 ⋅ 28 of the FMN‐binding aptamer and of the hammerhead ribozyme, respectively.  相似文献   

3.
The interaction of phenyl‐substituted indolo[3,2‐b]quinolines with DNA G‐quadruplexes of different topology were studied by using a combination of spectroscopic and calorimetric methodologies. N5‐Methylated indoloquinoline derivatives (MePIQ) with an aminoalkyl side chain exhibit high affinities for the parallel‐stranded MYC quadruplex and a (3+1)‐hybrid structure combined with an excellent discrimination against the antiparallel thrombin‐binding aptamer (TBA) and the human telomeric (HT) quadruplexes. Dissociation constants for the binding of the ligand to the MYC quadruplex are in the submicromolar range, being below the corresponding dissociation constants for the antiparallel‐stranded quadruplexes by about one order of magnitude. Competition experiments with double‐helical DNA reveal the impact of indoloquinoline structural features on the selectivity for the parallel quadruplex relative to duplex DNA. Based on a calorimetric analysis binding to MYC is shown to be equally driven by favorable enthalpic and entropic contributions with no significant impact on the type of cation present.  相似文献   

4.
A new electrochemical sensing platform was designed for sensitive detection of copper(II) (Cu2+) based on click conjugation of two short oligonucleotides by using methylene blue‐functionalized hairpin DNA as the template. The analyte (Cu2+) was in situ reduced to Cu+ by sodium ascorbate, which catalyzed the click conjugation between two single‐stranded oligonucleotides one was labelled with a 5′‐alkyne and the other with 3′‐azide group via the Cu+‐catalyzed azide‐alkyne cycloaddition. The newly formed long‐chain oligonucleotide induced the conformational change of hairpin DNA to open the hairpin, resulting in methylene blue far away from the electrode for the decrease of redox current. Under optimal conditions, the decrease in the electronic signal was directly proportional to target Cu2+ concentration, and allowed the detection of Cu2+ at a concentration as low as 1.23 nM. Our strategy also displayed high selectivity for Cu2+ against other metal ions owing to the highly specific Cu+‐catalyzed click chemistry reaction, and was applicable for monitoring of Cu2+ in drinking water with satisfactory results.  相似文献   

5.
Oligonucleotide‐based hepatocyte growth factor (HGF) mimetics are described. A DNA aptamer to Met, a cognate receptor for HGF, was shown to induce Met activation when used in dimer form. The most potent aptamer dimer, ss‐0, which was composed solely of 100‐mer single‐stranded DNA, exhibited nanomolar potency. Aptamer ss‐0 reproduced HGF‐induced cellular behaviors, including migration and proliferation. The present work sheds light on oligonucleotides as a novel chemical entity for the design of growth factor mimetics.  相似文献   

6.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

7.
DNA‐based self‐assembled nanostructures are widely used to position organic and inorganic objects with nanoscale precision. A particular promising application of DNA structures is their usage as programmable carrier systems for targeted drug delivery. To provide DNA‐based templates that are robust against degradation at elevated temperatures, low ion concentrations, adverse pH conditions, and DNases, we built 6‐helix DNA tile tubes consisting of 24 oligonucleotides carrying alkyne groups on their 3′‐ends and azides on their 5′‐ends. By a mild click reaction, the two ends of selected oligonucleotides were covalently connected to form rings and interlocked DNA single strands, so‐called DNA catenanes. Strikingly, the structures stayed topologically intact in pure water and even after precipitation from EtOH. The structures even withstood a temperature of 95 °C when all of the 24 strands were chemically interlocked.  相似文献   

8.
《Electroanalysis》2018,30(8):1847-1854
Current demand for a stable, low cost and sensitive malaria sensor has prompted to explore novel recognition systems that can substitute widely used protein based labile biorecognition elements to be used in point of care diagnostic devices. Here, we report a novel ssDNA aptamer of 90 mer sequence developed by SELEX process against HRP‐II, a specific biomarker for Plasmodium falciparum strains. High stability of the secondary structure of the isolated aptamer was discerned from its free energy of folding of −20.40 kcal mole−1. The binding constant (Kd) of the aptamer with HRP‐II analysed by isothermal titration calorimetry was ∼1.32 μM. Circular dichroism studies indicated B form of the aptamer DNA. The aptamer was chemically immobilized on a gold electrode surface through a self‐assembled monolayer of dithio‐bis(succinimidyl) propionate to produce the aptasensor. The step wise modification of the layers over the gold electrode during fabrication of the aptasensor was confirmed by cyclic voltammetry. The aptasensor was then challenged with different concentration of HRP‐II and analysed the interaction signals through electrochemical impedance spectroscopy. The impedance signal behaved reciprocally with the increasing concentrations of the target in the sample from which a dynamic range of 1 pM–500 pM (R2=0.99) and LOD of ∼3.15 pM were discerned. The applicability of the developed aptasensor to detect HRP‐II in mimicked real sample was also validated.  相似文献   

9.
An oligonucleotide of triazole‐linked RNA (TLRNA) was synthesized by performing consecutive copper‐catalyzed azide‐alkyne cycloaddition reactions for elongation. The reaction conditions that had been optimized for the synthesis of 3‐mer TLRNA were found to be inappropriate for longer oligonucleotides, and the conditions were reoptimized for the solid‐phase synthesis of an 11‐mer TLRNA oligonucleotide. Duplex formation of the 11‐mer TLRNA oligonucleotide was examined with the complementary oligonucleotide of natural RNA to reveal the effects of the 2′‐OH groups on the duplex stability.  相似文献   

10.
The specific binding ability of DNA–lipid micelles (DLMs) can be increased by the introduction of an aptamer. However, supramolecular micellar structures based on self‐assemblies of amphiphilic DLMs are expected to demonstrate low stability when interacting with cell membranes under certain conditions, which could lead to a reduction in selectivity for targeting cancer cells. We herein report a straightforward cross‐linking strategy that relies on a methacrylamide branch to link aptamer and lipid segments. By an efficient photoinduced polymerization process, covalently linked aptamer–lipid units help stabilize the micelle structure and enhance aptamer probe stability, further improving the targeting ability of the resulting nanoassembly. Besides the development of a facile cross‐linking method, this study clarifies the relationship between aptamer–lipid concentration and the corresponding binding ability.  相似文献   

11.
G‐rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper‐catalyzed azide‐alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G‐quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context.  相似文献   

12.
Expanding the number of nucleotides in DNA increases the information density of functional DNA molecules, creating nanoassemblies that cannot be invaded by natural DNA/RNA in complex biological systems. Here, we show how six‐letter GACTZP DNA contributes this property in two parts of a nanoassembly: 1) in an aptamer evolved from a six‐letter DNA library to selectively bind liver cancer cells; and 2) in a six‐letter self‐assembling GACTZP nanotrain that carries the drug doxorubicin. The aptamer‐nanotrain assembly, charged with doxorubicin, selectively kills liver cancer cells in culture, as the selectivity of the aptamer binding directs doxorubicin into the aptamer‐targeted cells. The assembly does not kill untransformed cells that the aptamer does not bind. This architecture, built with an expanded genetic alphabet, is reminiscent of antibodies conjugated to drugs, which presumably act by this mechanism as well, but with the antibody replaced by an aptamer.  相似文献   

13.
Nucleobase‐directed spin‐labeling by the azide‐alkyne ‘click’ (CuAAC) reaction has been performed for the first time with oligonucleotides. 7‐Deaza‐7‐ethynyl‐2′‐deoxyadenosine ( 1 ) and 5‐ethynyl‐2′‐deoxyuridine ( 2 ) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4‐azido‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (4‐azido‐TEMPO, 3 ) was performed by post‐modification in solution. Two spin labels ( 3 ) were incorporated with high efficiency into the DNA duplex at spatially separated positions or into a ‘dA‐dT’ base pair. Modification at the 5‐position of the pyrimidine base or at the 7‐position of the 7‐deazapurine residue gave steric freedom to the spin label in the major groove of duplex DNA. By applying cw and pulse EPR spectroscopy, very accurate distances between spin labels, within the range of 1–2 nm, were measured. The spin–spin distance was 1.8±0.2 nm for DNA duplex 17 ( dA*7,10 ) ?11 containing two spin labels that are separated by two nucleotides within one individual strand. A distance of 1.4±0.2 nm was found for the spin‐labeled ‘dA‐dT’ base pair 15 ( dA*7 ) ?16 ( dT*6 ). The ‘click’ approach has the potential to be applied to all four constituents of DNA, which indicates the universal applicability of the method. New insights into the structural changes of canonical or modified DNA are expected to provide additional information on novel DNA structures, protein interaction, DNA architecture, and synthetic biology.  相似文献   

14.
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence‐based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4‐cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+. The photophysical properties of the new nucleobase–ligand‐FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET‐based readout of ligand binding. This strategy is generally suitable for binding‐site mapping and may also be applied for responsive aptamer devices.  相似文献   

15.
New chemically modified oligonucleotides at the site of the backbone are needed to improve the properties of oligonucleotides. A practical synthesis for a triazole‐linked nucleoside dimer based on a PNA‐like structure has been developed. This involves synthesizing two uracil‐based monomers that contain either an azide or an alkyne functionality, followed by copper‐catalyzed 1,3‐dipolar cycloaddition. This dimer was incorporated within an oligonucleotide via phosphoramidite chemistry and UV‐monitored thermal denaturation data illustrates slight destabilization relative to its target complementary sequence. This chemically modified dimer will allow for a future investigation of its properties within DNA and RNA‐based applications. J. Heterocyclic Chem., (2011).  相似文献   

16.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(CC) interactions, Pt Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

17.
Guanine (G)‐rich oligonucleotides have attracted considerable interest as therapeutic agents. Two G‐rich aptamers were selected against epidermal growth factor receptor (EGFR)‐transfected A549 cells, and their G‐rich domains (S13 and S50) were identified to account for the binding of parental aptamers. Circular dichroism (CD) spectra showed that S13 and S50 bound to their targets by forming parallel quadruplexes. Their binding, internalization, and antiproliferation activity in cancer and noncancer cells were investigated by flow cytometry and 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assay, and compared with those of nucleolin‐binding AS1411 and thrombin‐binding aptamer. The two truncated aptamers (S13 and S50) have good binding and internalization in cancer cells and noncancer cells; however, only S50, similar to AS1411, shows potent antiproliferation against cancer cells. Our data suggest that tumor‐selective antiproliferation of G‐rich oligonucleotides does not directly depend on the binding of the G‐rich aptamer to cells.  相似文献   

18.
To better understand the range of cellular interactions of PtII‐based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize PtII compounds with alkyne or azide moieties for post‐treatment conjugation through the azide–alkyne cycloaddition (click) reaction. Herein, we report an alkyne‐appended cis‐diamine PtII compound, cis‐[Pt(2‐(5‐hexynyl)amido‐1,3‐propanediamine)Cl2] ( 1 ), the X‐ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(C?C) interactions, Pt? Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt? alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70‐fold fluorescence increase. This result demonstrates the potential for this new class of alkyne‐modified Pt compound for the comprehensive detection and isolation of Pt‐bound biomolecules.  相似文献   

19.
All‐DNA scaffolds act as templates for the organization of photosystem I model systems. A series of DNA templates composed of ZnII‐protoporphyrin IX (ZnIIPPIX)‐functionalized G‐quadruplex conjugated to the 3′‐ or 5′‐end of the tyrosinamide (TA) aptamer and ZnIIPPIX/G‐quadruplex linked to the 3′‐ and 5′‐ends of the TA aptamer through a four‐thymidine bridge. Effective photoinduced electron transfer (ET) from ZnIIPPIX/G‐quadruplex to bipyridinium‐functionalized tyrosinamide, TA‐MV2+, bound to the TA aptamer units is demonstrated. The effectiveness of the primary ET quenching of ZnIIPPIX/G‐quadruplex by TA‐MV2+ controls the efficiency of the generation of TA‐MV+.. The photosystem‐controlled formation of TA‐MV+. by the different photosystems dictates the secondary activation of the ET cascade corresponding to the ferredoxin‐NADP+ reductase (FNR)‐catalysed reduction of NADP+ to NADPH by TA‐MV+., and the sequestered alcohol dehydrogenase catalysed reduction of acetophenone to 1‐phenylethanol by NADPH.  相似文献   

20.
In this paper, a novel strategy of electrochemical amplified detection of thrombin based on G‐quadruplex‐linked supersandwich structure was described. In the presence of K+ and hemin, the original hairpin DNA sequence activated an autonomous cross‐opening process to build up hemin/G‐quadruplex structure and can hybridize to form supersandwich structure containing multiple signal labels. With the addition of thrombin, it conjugated with its aptamer, leading to a remarkably descended signal. The supersandwich‐amplified electrochemical sensor system was highly sensitive in the concentration range from 10?6 to 10?10 M with a detection limit of 10 pM and also demonstrated excellent selectivity. The amplifying supersandwich structure with multiple labels can be implemented as a versatile sensing platform for analyzing other DNA in the presence of the appropriate probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号