首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   

2.
Using two 4-substitued triazole ligands, 4-(pyrid-2-yl)-1,2,4-triazole (L(1)) and 4-(pyrid-3-yl)-1,2,4-triazole (L(2)), a series of novel triazole-cadmium(II) complexes varying from zero- to three-dimensional have been prepared and their crystal structures determined via single-crystal X-ray diffraction. [Cd(2)(micro(2)-L(1))(3)(L(1))(2)(NO(3))(mu(2)-NO(3))(H(2)O)(2)](NO(3))(2).1.75H(2)O (1) is a binuclear complex containing bidendate, monodedate and free nitrate anions. When the bridging anions SCN(-) and dca (dca = N(CN)(2)(-)) were added to the reaction system of 1, one-dimensional (1D) [Cd(L(1))(2)(NCS)(2)](n) (2) and two-dimensional (2D) [Cd(L(1))(2)(dca)(2)](n) (3) were isolated, respectively. When L(2) instead of L(1) was used, [Cd(L(2))(2)(NCS)(2)(H(2)O)(2)] (4) and 1D [Cd(L(2))(2)(dca)(2)](n) (5) were obtained. When the ratio of Cd to L(2) was changed from 1:2 to 1:1 in the reaction system of 5, three-dimensional (3D) {[Cd(3)(micro(2)-L(2))(3)(dca)(6)].0.75H(2)O}(n) (6) with 1D microporous channels along the a direction was isolated. Further investigations on other Cd(ii) salts and the L(2) ligand in a Cd to L(2) ratio of 1:1, an unexpected complex [Cd(mu(2)-L(2))(mu(3)-SO(4))(H(2)O)](n) (7) with a 3D open framework was obtained. All of the complexes exhibit strong blue fluorescence emission bands in the solid state at ambient temperature, of which the excitation and emission maxima are red-shifted to longer wavelength as compared to those in water. Powder X-ray diffraction and thermal studies were used to investigate the bulk nature of the 3D coordination polymers 6 and 7.  相似文献   

3.
New hydrazone o-HO-phenylhydrazo-β-diketones (OHADB), R(1)NHN═CR(2)R(3) [R(1) = HO-2-C(6)H(4), R(2) = R(3) = COMe (H(2)L(1), 1), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(2), 2), R(2) = COMe, R(3) = COOEt (H(2)L(4), 4); R(1) = HO-2-O(2)N-4-C(6)H(3), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(3), 3), R(2) = COMe, R(3) = COOEt (H(2)L(5), 5), R(2)R(3) = COMe (H(2)L(6), 6A)], and their Cu(II) complexes [Cu(2)(CH(3)OH)(2)(μ-L(1))(2)] 7, [Cu(2)(H(2)O)(2)(μ-L(2))(2)] 8, [Cu(H(2)O)(L(3))] 9, [Cu(2)(μ-L(4))(2)](n) 10, [Cu(H(2)O)(L(5))] 11, [Cu(2)(H(2)O)(2)(μ-L(6))(2)] 12A and [Cu(H(2)O)(2)(L(6))] 12B were synthesized and fully characterized, namely, by X-ray analysis (4, 5, 7-12B). Reaction of 6A, Cu(NO(3))(2) and ethylenediamine (en) leads, via Schiff-base condensation, to [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}] (13), and reactions of 12A and 12B with en give the Schiff-base polymer [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}](n) 14. The dependence of the OHADB tautomeric equilibria on temperature, electronic properties of functional groups, and solvent polarity was studied. The OHADB from unsymmetrical β-diketones exist in solution as a mixture of enol-azo and hydrazo tautomeric forms, while in the solid state all the free and coordinated OHADB crystallize in the hydrazo form. The relative stabilities of various tautomers were studied by density functional theory (DFT). 7-14 show catalytic activities for peroxidative oxidation (in MeCN/H(2)O) of cyclohexane to cyclohexanol and cyclohexanone, for selective aerobic oxidation of benzyl alcohols to benzaldehydes in aq. solution, mediated by TEMPO radical, under mild conditions and for the MW-assisted solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant.  相似文献   

4.
Zhu AX  Zhang JP  Lin YY  Chen XM 《Inorganic chemistry》2008,47(16):7389-7395
The self-assembly of Zn(II) and Cd(II) ions with a bis-bidentate ligand 3,5-bis(benzimidazol-2-yl)pyrazole (H 3L) was studied by Electrospray ionization mass spectrometry, (1)H NMR measurements, and single-crystal X-ray diffraction analyses. Reaction of Zn(ClO 4) 2.6H 2O and Cd(ClO 4) 2.6H 2O with H 3L in DMF gave two pentanuclear complexes [(Zn 5(mu 3-O)(H 2L) 6)(ClO 4) 2.DMF.9.5H 2O ( 1) and [Cd 5(mu 3-O)(H 2L) 6](ClO 4)(OH).4.75DMF.0.25EtOH.10.5H 2O ( 2), in which the trigonal-bipyramidal core structures are bridged by mu 3-oxo and pyrazolate rings of the monodeprotonated H 2L. When Na 3PO 4.12H 2O was used in the reaction system of CdBr 2.4H 2O and H 3L, [Cd 5(mu 3-O)(H 2L) 6]Br 2.4.5DMF.6.5H 2O ( 3) and [Cd 7(mu 6-PO 4)(mu-Br) 3(H 2L) 6](HPO 4).DMF.10H 2O ( 4) were isolated. 3 displays the same core structure as that of 2, whereas 4 exhibits a turbinate, heptanuclear core which is bridged by a mu 6-PO 4, three mu-Br, and three pyrazolate rings. All of the pentanuclear and heptanuclear cores are surrounded by three pairs of bis-bidentate H 2L (-) ligands with offset pi-pi stacking, showing propeller-like molecular structures and triple-stand helicates. Electrospray ionization mass spectrometry studies and (1)H NMR measurements demonstrate that the pentanuclear complexes have different stability in the solution, depending on the metal ions and the counteranions. Furthermore, both 1 and 2 emit blue fluorescence with nanosecond luminescent lifetimes in DMF at room temperature.  相似文献   

5.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

6.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

7.
Two novel polynuclear complexes{NaFe4(μ4-O)(L)4(μ2-Cl)[Fe(CN)5NO](H2O)(DMF)2}(1) and{NaFe4(μ4-O)(L)4(μ2-OEt)[Fe(CN)5NO](H2O)(DMF)2}(2) have been prepared using the tetradentate N-(2-hydroxyethyl)-3-methoxysalicylaldimine Schiff-base ligand (H2L) with the help of[Fe(CN)5NO]2-linkers,where the ligand was in situ synthesized through the condensation of o-vanillin and e...  相似文献   

8.
The work in this paper presents syntheses, characterization, crystal structures, variable-temperature/field magnetic properties, catecholase activity, and electrospray ionization mass spectroscopic (ESI-MS positive) study of five copper(II) complexes of composition [Cu(II)(2)L(μ(1,1)-NO(3))(H(2)O)(NO(3))](NO(3)) (1), [{Cu(II)(2)L(μ-OH)(H(2)O)}(μ-ClO(4))](n)(ClO(4))(n) (2), [{Cu(II)(2)L(NCS)(2)}(μ(1,3)-NCS)](n) (3), [{Cu(II)(2)L(μ(1,1)-N(3))(ClO(4))}(2)(μ(1,3)-N(3))(2)] (4), and [{Cu(II)(2)L(μ-OH)}{Cu(II)(2)L(μ(1,1)-N(3))}{Cu(II)(μ(1,1)-N(3))(4)(dmf)}{Cu(II)(2)(μ(1,1)-N(3))(2)(N(3))(4)}](n)·ndmf (5), derived from a new compartmental ligand 2,6-bis[N-(2-pyridylethyl)formidoyl]-4-ethylphenol, which is the 1:2 condensation product of 4-ethyl-2,6-diformylphenol and 2-(2-aminoethyl)pyridine. The title compounds are either of the following nuclearities/topologies: dinuclear (1), dinuclear-based one-dimensional (2 and 3), tetranuclear (4), and heptanuclear-based one-dimensional (5). The bridging moieties in 1-5 are as follows: μ-phenoxo-μ(1,1)-nitrate (1), μ-phenoxo-μ-hydroxo and μ-perchlorate (2), μ-phenoxo and μ(1,3)-thiocyanate (3), μ-phenoxo-μ(1,1)-azide and μ(1,3)-azide (4), μ-phenoxo-μ-hydroxo, μ-phenoxo-μ(1,1)-azide, and μ(1,1)-azide (5). All the five compounds exhibit overall antiferromagnetic interaction. The J values in 1-4 have been determined (-135 cm(-1) for 1, -298 cm(-1) for 2, -105 cm(-1) for 3, -119.5 cm(-1) for 4). The pairwise interactions in 5 have been evaluated qualitatively to result in S(T) = 3/2 spin ground state, which has been verified by magnetization experiment. Utilizing 3,5-di-tert-butyl catechol (3,5-DTBCH(2)) as the substrate, catecholase activity of all the five complexes have been checked. While 1 and 3 are inactive, complexes 2, 4, and 5 show catecholase activity with turn over numbers 39 h(-1) (for 2), 40 h(-1) (for 4), and 48 h(-1) (for 5) in dmf and 167 h(-1) (for 2) and 215 h(-1) (for 4) in acetonitrile. Conductance of the dmf solution of the complexes has been measured, revealing that bridging moieties and nuclearity have been almost retained in solution. Electrospray ionization mass (ESI-MS positive) spectra of complexes 1, 2, and 4 have been recorded in acetonitrile solutions and the positive ions have been well characterized. ESI-MS positive spectrum of complex 2 in presence of 3,5-DTBCH(2) have also been recorded and, interestingly, a positive ion [Cu(II)(2)L(μ-3,5-DTBC(2-))(3,5-DTBCH(-))Na(I)](+) has been identified.  相似文献   

9.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

10.
11.
Four Th(IV) hydroxide/oxide clusters have been synthesized from aqueous solution. The structures of [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(15)(SeO(4))(8)·7.5H(2)O] (1), [Th(8)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(17)(SeO(4))(8)·nH(2)O] (2), [Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)] (3), and Th(9)(μ(3)-O)(4)(μ(2)-OH)(8)(H(2)O)(21)(SeO(4))(10)·nH(2)O (4) were determined using single crystal X-ray diffraction. Each structure consists of an octanuclear core, [Th(8)O(4)(OH)(8)](16+), that is built from eight Th(IV) atoms (four Th in a plane and two up and two down) linked by four "inner" μ(3)-O and eight "outer" μ(2)-OH groups. Compounds 3 and 4 additionally contain mononuclear [Th(H(2)O)(5)(SeO(4))(4)](4-) units that link the octamers into an extended structure. The octanuclear units are invariably complexed by two selenate anions that sit in two cavities formed by four planar Th(IV) and four extra-planar Th(IV) atoms, thus making [Th(8)O(4)(OH)(8)(SeO(4))(2)](12+) a common building block in 1-4. However, changes in hydration as well selenate coordination give rise to structural differences that are observed in the extended structures of 1-4. The compounds were also characterized by Raman spectroscopy. Density functional theory calculations were performed to predict the geometries, vibrational frequencies, and relative energies of different structures. Details of the calculated structures are in good agreement with experimental results, and the calculated frequencies were used to assign the experimental Raman spectra. On the basis of an analysis of the DFT results, the compound Th(8)O(8)(OH)(4)(SeO(4))(6) was predicted to be a strong gas phase acid but is reduced to a weak acid in aqueous solution. Of the species studied computationally, the dication Th(8)O(6)(OH)(6)(SeO(6))(6)(2+) is predicted to be the most stable in aqueous solution at 298 K followed by the monocation Th(8)O(7)(OH)(5)(SeO(6))(6)(+).  相似文献   

12.
The tungsten aminoalkoxides W(O)(OPr(i))(3)L [L = dmae, OCH(2)CH(2)NMe(2) (1); bdmap, OCH(CH(2)NMe(2))(2) (2); tdmap, OC(CH(2)NMe(2))(3) (3)] have been synthesised. Controlled hydrolysis of 1-3 has allowed isolation of W(4)O(4)(μ-O)(6)(dmae)(4) (4), W(4)O(4)(μ-O)(4)(OPr(i))(4)(bdmap)(4) (5), W(6)O(6)(μ-O)(9)(tdmap)(6) (6), W(4)O(4)(μ-O)(6)(tdmap)(4) (7), W(4)O(4)(μ-O)(6)(tdmap)(4)·4H(2)O (7a), all of which have been characterised by X-ray crystallography. 4, 7, 7a each embody a W(4)O(6) core with adamantane structure, 5 incorporates a folded W(4)O(4) square and 6 has a trigonal prismatic W(6)O(9) at its heart. 7 decomposes in air at to give orthorhombic WO(3), while 1-3 decomposed under an autogenerated pressure (Reaction under Autogenic Pressure at Elevated Temperatures, RAPET) to form mixtures of carbon-coated WO(x) needles and carbon spherules.  相似文献   

13.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

14.
Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2 and 3 demonstrate that the magnetic interactions are completely dominated by ferromagnetic coupling occurring between Ni(II) ions for all bridges with coupling constants (J(1), J(2), and J(3)) ranging from 2.10 to 14.56 cm(-1) (in the ? = -J(1)(?(1)?(2)) - J(1)(?(2)?(3)) - J(2)(?(3)?(4)) - J(1)(?(4)?(5)) - J(1)(?(5)?(6)) - J(2)(?(1)?(6)) - J(3)(?(2)?(6)) - J(3)(?(2)?(5)) - J(3)(?(3)?(5)) convention).  相似文献   

15.
The synthesis, structures, and magnetic properties of a family of isostructural "bell-shaped" heterometallic coordination clusters [Mn(III)(9)Mn(II)(2)La(III)(2)(μ(4)-O)(7)(μ(3)-O)(μ(3)-OH)(2)(piv)(10.8)(O(2)CC(4)H(3)O)(6.2)(NO(3))(2)(OH(2))(1.5)(MeCN)(0.5)]·12CH(3)CN·2H(2)O (1) and [Mn(III)(9)Mn(II)(2)Ln(2)(μ(4)-O)(7)(μ (3)-O)(μ(3)-OH)(2)(piv)(10.6)(O(2)CC(4)H(3)O)(6.4)(NO(3))(2)(OH(2))]·nCH(3)CN·H(2)O (Ln = Pr(III), n = 8 (2); Ln = Nd(III), n = 10 (3); Ln = Eu(III), n = 17 (4); Ln = Gd(III), n = 13 (5); piv = pivalate) are reported. The complexes were obtained from the reaction of [Mn(III)(2)Mn(II)(4)O(2)(piv)(10)(4-Me-py)(2.5)(pivH)(1.5)] and Ln(NO(3))(3)·6H(2)O in the presence of 2-furan-carboxylic acid (C(4)H(3)OCOOH) in CH(3)CN. Compounds 1-5 are isomorphous, crystallizing in the triclinic space group P1 with Z = 2. The Mn(III) and Mn(II) centers together form the shell of the bell, while the two Ln(III) centers can be regarded as the bell's clapper. The magnetic properties of 1-4 reveal dominant antiferromagnetic interactions between the magnetic centers leading to small spin ground states; while those of 5 indicate similar antiferromagnetic interactions between the manganese ions but with unusually strong ferromagnetic interactions between the Gd(III) ions leading to a large overall spin ground state of S = 11-12. While ac and dc magnetic measurements confirmed that Mn(11)Gd(2) (5) is a single-molecule magnet (SMM) showing hysteresis loops at low temperatures, compounds 1-4 do not show any slow relaxation of the magnetization, indicating that the S = 7 spin of the ferromagnetic Gd(2) unit in 5 is a necessary contribution to its SMM behavior.  相似文献   

16.
Two neutral silver(I)-phenylethynide clusters incorporating the [((t)BuPO(3))(4)V(4)O(8)](4-) unit as an integral shell component, namely {(NO(3))(2)@Ag(16)(C≡CPh)(4)[((t)BuPO(3))(4)V(4)O(8)](2)(DMF)(6)(NO(3))(2)}·DMF·H(2)O and {[(O(2))V(2)O(6)](3)@Ag(43)(C≡CPh)(19)[((t)BuPO(3))(4)V(4)O(8)](3)(DMF)(6)}·5DMF·2H(2)O, have been isolated and characterized by X-ray crystallography. The central cavities of the Ag(16) and Ag(43) clusters are occupied by two NO(3)(-) and three [(O(2))V(2)O(6)](4-) template anions, respectively.  相似文献   

17.
The new tricopper(II) complex [Cu(3)(μ(3)-BO)(H(3)L)(3)][BF(4)]·2H(2)O (1) with an unprecedented diamondoid-like [Cu(3)B(μ-O)(6)] core has been easily generated by self-assembly in an aqueous medium from Cu(NO(3))(2), NaBF(4), NaOH and Bis-Tris (H(5)L) biobuffer, (HOCH(2))(3)CN(CH(2)CH(2)OH)(2). Compound 1 efficiently promotes the mild single-pot hydrocarboxylation, by CO and H(2)O, of various linear and cyclic C(n) (n = 2-8) alkanes into the corresponding C(n+1) carboxylic acids.  相似文献   

18.
The hydrothermal chemistry of a variety of M(II)SO(4) salts with the tetrazole (Ht) ligands 5,5'-(1,4-phenylene)bis(1H-tetrazole) (H(2)bdt), 5',5'-(1,1'-biphenyl)4,4'-diylbis(1H-tetrazole) (H(2)dbdt) and 5,5',5'-(1,3,5-phenylene)tris(1H-tetrazole) (H(3)btt) was investigated. In the case of Co(II), three phases were isolated, two of which incorporated sulfate: [Co(5)F(2)(dbdt)(4)(H(2)O)(6)]·2H(2)O (1·2H(2)O), [Co(4)(OH)(2)(SO(4))(bdt)(2)(H(2)O)(4)] (2) and [Co(3)(OH)(SO(4))(btt)(H(2)O)(4)]·3H(2)O (3·3H(2)O). The structures are three-dimensional and consist of cluster-based secondary building units: the pentanuclear {Co(5)F(2)(tetrazolate)(8)(H(2)O)(6)}, the tetranuclear {Co(4)(OH)(2)(SO(4))(2)(tetrazolate)(6)}(4-), and the trinuclear {Co(3)(μ(3)-OH)(SO(4))(2) (tetrazolate)(3)}(2-) for 1, 2, and 3, respectively. The Ni(II) analogue [Ni(2)(H(0.67)bdt)(3)]·10.5H(2)O (4·10.5H(2)O) is isomorphous with a fourth cobalt phase, the previously reported [Co(2)(H(0.67)bat)(3)]·20H(2)O and exhibits a {M(tetrazolate)(3/2)}(∞) chain as the fundamental building block. The dense three-dimensional structure of [Zn(bdt)] (5) consists of {ZnN(4)}tetrahedra linked through bdt ligands bonding through N1,N3 donors at either tetrazolate terminus. In contrast to the hydrothermal synthesis of 1-5, the Cd(II) material (Me(2)NH(2))(3)[Cd(12)Cl(3)(btt)(8)(DMF)(12)]·xDMF·yMeOH (DMF = dimethylformamide; x = ca. 12, y = ca. 5) was prepared in DMF/methanol. The structure is constructed from the linking of {Cd(4)Cl(tetrazolate)(8)(DMF)(4)}(1-) secondary building units to produce an open-framework material exhibiting 66.5% void volume. The magnetic properties of the Co(II) series are reflective of the structural building units.  相似文献   

19.
Russian Journal of Coordination Chemistry - Two Mo(VI) clusters, (H2L)3[Mo7O12(μ2-O)8(μ3-O)4] · 3H2O (I) and (H2L)2[Mo8O14(μ2-O)6(μ3-O)4(μ5-O)2] · 4DMF (II),...  相似文献   

20.
The synthesis and characterizations of a family of isomorphous [Mn(III)(2)M(III)(4)L(2)(μ(4)-O)(2)(N(3))(2)(CH(3)O)(2)(CH(3)OH)(4)(NO(3))(2)]·2H(2)O (M = Y(1), Gd(2), Tb(3), Dy(4)) are reported, where H(4)L = N,N'-dihydroxyethyl-N,N'-(2-hydroxy-4,5-dimethylbenzyl)ethylenediamine. They were obtained from the reactions of H(4)L with M(NO(3))(3)·6H(2)O, Mn(ClO(4))(2)·6H(2)O, NaN(3) and NEt(3) in a 1?:?1?:?1?:?2?:?2 molar ratio. The core structure consists of a Mn(2)M(4) unit. The four M(III) ions that are held together by two μ(4)-bridging oxygen atoms form a butterfly M(4) moiety. The M(4) core is further connected to the two five-coordinate trigonal-bipyramidal Mn(III) ions via one μ(4)-O(2-), two alkyloxo and one methoxo triple bridges. Magnetic susceptibility measurements indicate the presence of intramolecular antiferromagnetic interactions in complex 2, and overall intramolecular ferromagnetic interactions in complexes 3 and 4. The alternating current (AC) magnetic susceptibility studies revealed that complexes 3 and 4 showed frequency-dependent out-of-phase signals, which indicates that they exhibit slow relaxation of the magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号