首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
<正>分子印迹(MIP)是合成预定选择性固定相的新兴技术[1-3],毛细管电色谱(CEC)是一种新型高效微分离技术[4-5],CEC和MIP相结合是当前的前沿课题之一。以对羟基苯甲酸为模板分子,采用在线热聚合制备毛细管电色谱整体柱的研究取得了满意的效果[6-7];以布洛芬为模板分子,以2-乙烯基吡啶为功能单体制备分子印迹毛细管电色谱整体柱,成功用于分离布洛芬同分异构体[8],以(S)-腺苷蛋氨酸为模板分子,采用热引发一步法制备分子印迹毛细  相似文献   

2.
张凌怡  王智聪  张维冰 《色谱》2013,31(4):335-341
采用中孔SBA-15棒状硅胶颗粒填充毛细管柱用于毛细管电色谱(CEC)分离。这一亚微米材料直径为400 nm并具有沿相同方向伸展的高度有序、均一的圆柱形中孔。棒状的特殊形态使得填充柱的通透性良好,简化了尺寸微小的CEC柱的填充过程。修饰后的棒状SBA-15填充毛细管柱成功应用于反相和离子交换电色谱分离非极性和极性样品,获得了较高柱效(140000理论塔板/m)。流速3.2cm/min时获得最低理论塔板高度为7.1 mm。范迪米特曲线说明了SBA-15孔结构的传质阻力特征。分别以芳香酸、人参、天麻提取物为样品,对亚微米固定相毛细管电色谱柱加以评价。该固定相显示出了较高的分离能力,为纳米材料在色谱固定相中的应用提供了一个新的思路。  相似文献   

3.
李振群  贾丽 《色谱》2020,38(9):1046-1056
手性药物通过与生物体内生物大分子之间的手性匹配与分子识别来发挥药理作用。两个对映体与体内手性环境相互作用的不同导致每个对映体表现出不同的药理活性、代谢过程、代谢速率及毒性等药代动力学特征。因此发展手性药物的拆分方法,对于手性药物的开发和生产过程的质量监控具有重要意义。分子印迹聚合物(MIPs)是以目标分子作为模板而制备的高分子聚合物,它具有特定的空间分子结构和官能团,对目标分子具有高度的特异性识别能力。基于该特点,MIPs非常适合于手性药物的拆分和纯化。毛细管电色谱(CEC)可同时基于毛细管电泳和液相色谱的分离机理对目标物进行分离,因此具有高分离效率和高选择性的特点。将MIPs材料作为CEC的固定相,可将这两种技术的优势结合,从而实现对手性药物的高效拆分。MIPs材料在1994年首次应用于CEC手性拆分,此后该研究领域开始获得关注和发展。MIPs材料主要通过4种模式在CEC中实现手性拆分,分别是作为开管柱、填充柱和整体柱的固定相以及分离介质中的准固定相。该综述以这4种模式作为分类基准,根据MIPs制备所需的材料和分离对象对其在CEC手性拆分中的应用进行了总结,揭示了MIPs在CEC手性拆分中的潜力,同时评述了这4种模式各自的优势与不足,并对将来MIPs在CEC手性拆分中的发展进行了展望。  相似文献   

4.
毛细管电色谱 ( Capillary electrochromatography,简称 CEC)是近年发展起来的一种高效、快速的新型微柱分离方法 [1~ 4] .由于它在毛细管柱内填充液相色谱固定相或者在毛细管内壁键合固定相 ,且采用电渗流作为驱动力 ,因而兼有高效液相色谱和毛细管电泳的分离特点 ,已应用于复杂的药物分析 [2 ] .填充柱毛细管柱具有工艺要求高、容易产生气泡、焦耳热和价格昂贵等缺点 .开管柱电色谱( Open- tubular CEC,简称 OTCEC)是将固定相键合或涂覆在毛细管的内壁 ,避免了上述缺陷 .因此已引起高度重视 [3,4] .大环多胺的结构与冠醚类似 ,是一…  相似文献   

5.
毛细管电色谱(Capillary electrochromatography,CEC)是一种结合了高效毛细管电泳(HPCE)的高柱效和微柱液相色谱(μHPLC)的高选择性的一种新型分离方法.由于在CEC分离中采用电渗流(EOF)作为推动力推动流动相,因而使得CEC具有比HPLC更高的分离效率和峰容量.因为在CEC分离过程中不存在反压,在HPLC中很难使用的微米和亚微米颗粒已经开始在CEC分离柱中获得应用,这也使得CEC获得了比HPLC高得多的分离效率.虽然根据理论预测,使用亚微米颗粒将获得更高的分离效率,然而,到目前为止,只有很少人尝试过使用亚微米颗粒作为填充固定相.  相似文献   

6.
毛细管电色谱和加压毛细管电色谱的进展与应用   总被引:2,自引:1,他引:1  
毛细管电色谱(CEC)以内含色谱固定相的毛细管为分离柱,以电渗流为驱动力,既可以分离带电物质也可以分离中性物质。它结合了毛细管电泳和高效液相色谱两者的优点,兼具高柱效、高分辨率、高选择性和高峰容量的特点,同时具有色谱和电泳的双重分离机理。然而,“纯粹”的电色谱在实际应用中有着天然的弱点,即: 在电流通过毛细管柱中的流动相时容易产生气泡(焦耳热作用),从而使电流中断和电渗流停止,毛细管柱必须被重新用流动相润湿后方能再次使用。加压毛细管电色谱(pCEC)将液相色谱中的压力流引入CEC系统中,不仅解决了气泡、干柱等问题,而且实现了定量阀进样和二元梯度洗脱。CEC和pCEC作为微分离领域的两种前沿技术,满足了当前复杂样品分析和分析仪器微型化的需求,近年来获得了广泛的关注。本文综述了这两种技术近来的发展,包括仪器、色谱固定相的发展,总结了其在生命科学、药物分析、食品安全以及环保样品分析等方面的应用进展,评述了各方法的特点,并展望了CEC和pCEC今后的发展和应用前景。  相似文献   

7.
分子印迹技术在毛细管电色谱中的应用   总被引:2,自引:0,他引:2  
分子印迹技术是制备具有分子识别功能聚合物,即分子印迹聚合物(MIPs)的一种新技术;毛细管电色谱(CEC)是一个具有发展前途的色谱新技术。将分子印迹技术和毛细管电色谱两种新技术相结合,优势互补,具有极大的发展潜力。本文对分子印迹技术在毛细管电色谱中的应用,以及各类MIPs-CEC毛细管柱的制备方法进行了较为全面的综述,引用文献52篇。  相似文献   

8.
分子印迹是合成预定选择性固定相的新兴技术,整体柱是新型的色谱固定相技术。将分子印迹聚合物与整体柱技术相结合,可以有效提高液相色谱的分离效率,有助于推动整个分离科学的发展,意义重大,是当今分析化学的研究热点。本文就分子印迹液相色谱整体柱的制备合成、色谱分离条件以及物理化学特性评价方法等方面的研究进展进行了较系统的综述,并对该技术目前存在的问题和发展前景进行了探讨。  相似文献   

9.
抗生素残留已成为全球公共卫生最严重的威胁之一,发展高效、 快速且简便的抗生素检测方法具有重要意义.分子印迹聚合物(MIP)作为人工合成的化学受体,可以高亲和力选择性识别目标分子,电化学发光(ECL)是一种发展成熟、应用广泛的电分析技术,两者结合的分子印迹-电化学发光法(MIP-ECL)具有选择性高、检出限低、成本低廉等...  相似文献   

10.
娄忠良  孟子晖  王鹏  孟文君 《有机化学》2009,29(11):1744-1749
分子印迹技术是制备特异性分子识别材料的新技术. 分子印迹聚合物(Molecularly-imprinted polymer, MIP)具有可同酶相媲美的选择性识别能力, 能够催化手性及区域选择性的反应, 是一种新型的分子反应器; 同时MIP具有良好的化学和物理稳定性, 因而在替代酶用于某些苛刻条件下的催化反应方面有良好的应用前景. 就近年来利用MIP模拟酶催化有机合成反应, 以及利用MIP作为分子反应器反面的研究进展进行了综述.  相似文献   

11.
A review is presented on the current state of the art and future trends in the development of sol-gel stationary phases for capillary electrochromatography (CEC). The design and synthesis of stationary phases with prescribed chromatographic and surface charge properties represent challenging tasks in contemporary CEC research. Further developments in CEC as a high-efficiency liquid-phase separation technique will greatly depend on new breakthroughs in the area of stationary phase development. The requirements imposed on CEC stationary phase performance are significantly more demanding compared with those for HPLC. The design of CEC stationary phase must take into consideration the structural characteristics that will provide not only the selective solute/stationary phase interactions leading to chromatographic separations but also the surface charge properties that determine the magnitude and direction of the electroosmotic flow responsible for the mobile phase movement through the CEC column. Therefore, the stationary phase technology in CEC presents a more complex problem than in conventional chromatographic techniques. Different approaches to stationary phase development have been reported in contemporary CEC literature. The sol-gel approach represents a promising direction in this important research. It is applicable to the preparation of CEC stationary phases in different formats: surface coatings, micro/submicro particles, and monolithic beds. Besides, in the sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. One remarkable advantage of the sol-gel approach is the mild thermal conditions under which the stationary phase synthesis can be carried out (typically at room temperature). It also provides an effective pathway to integrating the advantageous properties of organic and inorganic material systems, and thereby enhancing and fine-tuning chromatographic selectivity of the created hybrid organic-inorganic stationary phases. This review focuses on recent developments in the design, synthesis, characterization, properties, and applications of sol-gel stationary phases in CEC.  相似文献   

12.
Molecularly imprinted composite materials were evaluated as chiral stationary phases in capillary electrochromatography (CEC). These consisted of spherical silica particles of different sizes and of different porosities, containing a surface-immobilized layer of molecularly imprinted polymer (MIP) targeted to bind L-phenylalanine anilide. Fused silica capillaries were packed over a length of 8.5 cm, using a pneumate amplification pump, and the stationary phase thus obtained was tested with respect to its electrochromatographic performance. The electroendosmotic flow (EOF) mobility was evaluated with respect to the content of grafted polymer, as well as the ionic strength and the acetonitrile content of the electrolyte. Moreover, the influence of the layer thickness and of the stationary phase porosity on the performance and on the sample load capacity was investigated. The packings exhibited different relative efficiencies for the two enantiomers. The results were discussed in terms of differencies in accessibility to the binding sites of the packings and of the mechanism of EOF generation. In the wide context of the different approaches so far proposed for MIP stationary phases in CEC, these materials can be a good alternative, worthy of further development and application, not restricted to chiral separations.  相似文献   

13.
Zhang G  Li Y  Fang Y  Han N  Xu B 《Electrophoresis》2003,24(4):693-699
Octadecyl silyl silica (ODS) phase coated with immobilized polysiloxanes (OV1701, SE-54, SE-30) were synthesized, their characteristics as capillary electrochromatography (CEC) column packing materials were studied. It was found that, although the polysiloxane coatings were different in polarity, the resulting packing materials showed the highest efficiencies when the respective coating ratios (polysiloxane:ODS, w/w) were all 20-30%. As expected, packing materials coated with different polysiloxanes resulted in different selectivity on solute pairs. Separations on these stationary phases were studied with different factors such as pH values and acetonitrile contents of the mobile phases. It was found that all these kind of stationary phases could resist basic mobile phase with a pH value as high as 11.6. Tests were made to analyze polar, basic drugs with CEC using the stationary phases.  相似文献   

14.
Monolithic molecularly imprinted columns are a new class of column that emerged in the early 1990s. These monolithic materials are typically prepared directly inside stainless steel columns or capillary columns without the tedious procedures of grinding, sieving, and column packing. Furthermore, the preparation of this type of MIP is more cost-efficient, because the amount of template molecules required is much lower. In recent years monolithic supports as stationary phases in high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have attracted significant interest because of their ease of preparation, high reproducibility, versatile surface chemistry, and rapid mass transport.  相似文献   

15.
Spégel P  Schweitz L  Nilsson S 《Electrophoresis》2003,24(22-23):3892-3899
The developments in molecularly imprinted polymer (MIP)-based capillary electrochromatography (CEC) achieved during the past years are reviewed in this article. The MIP is prepared using a templated polymerization reaction and results in a material with a high selectivity towards a predetermined target. The selectivity of the MIP is comparable to that of the biological antibodies, however, the MIP is much more stable and is thus able to withstand extremely harsh conditions in terms of pH, temperature, and organic solvents. The high selectivity and stability of the MIP made it an interesting candidate for application as stationary phase sorbent in chromatography. However, due to slow kinetics the efficiency of the early MIP columns, which were predominantly applied in high-performance liquid chromatography (HPLC), were limited. The use of CEC was thought to improve the efficiency of the MIP-based separation system. The small dimensions of the capillary format employed in CEC have put demands on the polymer systems which have resulted in the development of many different polymer formats. Thus, this need for novel MIP formats for applications in CEC has contributed a lot to the general development of MIP formats as well as to the knowledge in MIP synthesis and characteristics.  相似文献   

16.
This review summarizes the variety of stationary phases that have been employed for capillary electrochromatography (CEC) separations. Currently, about 70% of reported CEC research utilizes C18 stationary phases designed for liquid chromatography, but an increasing number of new materials (e.g., ion-exchange phases, sol-gel approaches, organic polymer continuous beds) are under development for use in CEC. Novel aspects of these different materials are discussed including the ability to promote electroosmotic flow, phase selectivity and activity for basic solutes. In addition, new column designs (polymer continuous beds and silica-sol-gel monoliths) are described.  相似文献   

17.
Qin F  Xie C  Yu Z  Kong L  Ye M  Zou H 《Journal of separation science》2006,29(10):1332-1343
Monolithic materials have become a well-established format for stationary phases in the field of capillary electrochromatography. Four types of monoliths, namely particle-fixed, silica-based, polymer-based, and molecularly imprinted monoliths, have been utilized as enantiomer-selective stationary phases in CEC. This review summarizes recent developments in the area of monolithic enantiomer-selective stationary phases for CEC. The preparative procedure and the characterization of these columns are highlighted. In addition, the disadvantages and limitations of different monolithic enantiomer-selective stationary phases in CEC are briefly discussed.  相似文献   

18.
Capillary electrochromatography of peptides and proteins   总被引:1,自引:0,他引:1  
Li Y  Xiang R  Wilkins JA  Horváth C 《Electrophoresis》2004,25(14):2242-2256
This paper reviews recent progress in bioanalysis using capillary electrochromatography (CEC), especially in the field of separation of proteins and peptides. Fundamentals of CEC are briefly discussed. Since most of the recent developments on CEC have focused on column technology, i.e., design of new stationary phases and development of new column configurations, we describe here a variety of column architectures along with their advantages and disadvantages. Newly emerged column technologies in CEC for high speed and high efficiency separation are also discussed. Different analytical platforms of CEC such as pressure-assisted CEC or voltage-assisted micro- high-performance liquid chromatography (HPLC), CEC with different detection techniques, CEC on microchip platforms and multidimensional electrochromatography with their applications in peptide and protein analysis are presented.  相似文献   

19.
Zou H  Ye M 《Electrophoresis》2000,21(18):4073-4095
Adsorption is always considered a troublesome effect in capillary electrophoresis (CE) and capillary electrochromatography (CEC). However, the adsorption effect can also be exploited to prepare or optimize the stationary phase in CEC. Compared with the chemical synthesis of new stationary phase materials for CEC, this method is simpler and more convenient. This review is focused on CEC with physically and dynamically adsorbed stationary phases. Separation of some acidic, basic and neutral solutes as well as enantiomers in CEC with dynamically adsorbed stationary phases are presented. The theory for the migration of charged solutes and the stationary phases currently used in CEC are also briefly reviewed.  相似文献   

20.
Malik A 《Electrophoresis》2002,23(22-23):3973-3992
The development of sol-gel open-tubular column technology in capillary electrochromatography (CEC) is reviewed. Sol-gel column technology offers a versatile means of creating organic-inorganic hybrid stationary phases. Sol-gel column technology provides a general approach to column fabrication for microseparation techniques including CEC, and is amenable to both open-tubular and monolithic columns. Direct chemical bonding of the stationary phase to the capillary inner walls provides enhanced thermal and solvent stability to sol-gel columns. Sol-gel stationary phases inherently possess higher surface area, and thus provide an effective one-step alternative to conventional open-tubular column technology. Sol-gel column technology is applicable to both silica-based and transition metal oxide-based hybrid stationary phases, and thus, provides a great opportunity to utilize advanced material properties of a wide range of nontraditional stationary phases to achieve enhanced selectivity in analytical microseparations. A wide variety of stationary phase ligands can be chemically immobilized on the capillary inner surface using a single-step sol-gel procedure. Sol-gel chemistry can be applied to design stationary phases with desired chromatographic characteristics, including the possibility of creating columns with either a positive or a negative charge on the stationary phase surface. This provides a new tool to control electroosmotic flow (EOF) in the column. Column efficiencies on the order of half a million theoretical plates per meter have been reported for sol-gel open-tubular CEC columns. The selectivity of sol-gel stationary phases can be easily fine-tuned by adjusting the composition of the coating sol solution. Open-tubular columns have significant advantages over their packed counterparts because of the simplicity in column making and hassle-free fritless operation. Open-tubular CEC columns possess low sample capacity and low detection sensitivity. Full utilization of the analytical potential of sol-gel open-tubular columns will require a concomitant development in the area of high-sensitivity detection technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号