首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triply‐bridging bis‐{hydrido(borylene)} and bis‐borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2(CO)9] with an in situ produced intermediate, generated from the low‐temperature reaction of [Cp*WCl4] (Cp*=η5‐C5Me5) and [LiBH4?THF] afforded triply‐bridging bis‐{hydrido(borylene)}, [(μ3‐BH)2H2{Cp*W(CO)2}2{Fe(CO)2}] ( 1 ) and bis‐borylene, [(μ3‐BH)2{Cp*W(CO)2}2{Fe(CO)3}] ( 2 ). The chemical bonding analyses of 1 show that the B?H interactions in bis‐{hydrido (borylene)} species is stronger as compared to the M?H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO‐LUMO for 2 as compared to 1 . In an attempt to synthesize the ruthenium analogue of 1 , a similar reaction has been performed with [Ru3(CO)12]. Although we failed to get the bis‐{hydrido(borylene)} species, the reaction afforded triply‐bridging bis‐borylene species [(μ3‐BH)2{WCp*(CO)2}2{Ru(CO)3}] ( 2′ ), an analogue of 2 . In search for the isolation of bridging bis‐borylene species of Rh, we have treated [Co2(CO)8] with nido‐[(RhCp*)2(B3H7)], which afforded triply‐bridging bis‐borylene species [(μ3‐BH)2(RhCp*)2Co2(CO)4(μ‐CO)] ( 3 ). All the compounds have been characterized by means of single‐crystal X‐ray diffraction study; 1H, 11B, 13C NMR spectroscopy; IR spectroscopy and mass spectrometry.  相似文献   

2.
Reaction of [1,2‐(Cp*RuH)2B3H7] ( 1 ; Cp*=η5‐C5Me5) with [Mo(CO)3(CH3CN)3] yielded arachno‐[(Cp*RuCO)2B2H6] ( 2 ), which exhibits a butterfly structure, reminiscent of 7 sep B4H10. Compound 2 was found to be a very good precursor for the generation of bridged borylene species. Mild pyrolysis of 2 with [Fe2(CO)9] yielded a triply bridged heterotrinuclear borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 3 ) and bis‐borylene complexes [{(μ3‐BH)(Cp*Ru)(μ‐CO)}2Fe2(CO)5] ( 4 ) and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 5 ). In a similar fashion, pyrolysis of 2 with [Mn2(CO)10] permits the isolation of μ3‐borylene complex [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ). Both compounds 3 and 6 have a trigonal‐pyramidal geometry with the μ3‐BH ligand occupying the apical vertex, whereas 4 and 5 can be viewed as bicapped tetrahedra, with two μ3‐borylene ligands occupying the capping position. The synthesis of tantalum borylene complex [(μ3‐BH)(Cp*TaCO)2(μ‐CO){Fe(CO)3}] ( 7 ) was achieved by the reaction of [(Cp*Ta)2B4H8(μ‐BH4)] at ambient temperature with [Fe2(CO)9]. Compounds 2 – 7 have been isolated in modest yield as yellow to red crystalline solids. All the new compounds have been characterized in solution by mass spectrometry; IR spectroscopy; and 1H, 11B, and 13C NMR spectroscopy and the structural types were unequivocally established by crystallographic analysis of 2 – 6 .  相似文献   

3.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

4.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

5.
The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4 ? THF at ?70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(μ3‐BH)(Cp*Co)2(μ‐CO)M(CO)5] ( 1 – 3 ; 1 : M=W, 2 : M=Mo, 3 : M=Cr). During the syntheses of complexes 1 – 3 , capped‐octahedral cluster [(Cp*Co)2(μ‐H)(BH)4{Co(CO)2}] ( 4 ) was also isolated in good yield. Complexes 1 – 3 are isoelectronic and isostructural to [(μ3‐BH)(Cp*RuCO)2(μ‐CO){Fe(CO)3}] ( 5 ) and [(μ3‐BH)(Cp*RuCO)2(μ‐H)(μ‐CO){Mn(CO)3}] ( 6 ), with a trigonal‐pyramidal geometry in which the μ3‐BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis‐phosphine ligands, the room‐temperature photolysis of complexes 1 – 3 , 5 , 6 , and [{(μ3‐BH)(Cp*Ru)Fe(CO)3}2(μ‐CO)] ( 7 ) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)nPPh2] (n=1–3) yielded complexes 9 – 11 , [3,4‐(Ph2P(CH2)nPPh2)‐closo‐1,2,3,4‐Ru2Fe2(BH)2] ( 9 : n=1, 10 : n=2, 11 : n=3). Quantum‐chemical calculations by using DFT methods were carried out on compounds 1 – 3 and 9 – 11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO–LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and 1H, 13C, and 11B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1 , 2 , 4 , 9 , and 10 .  相似文献   

6.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

7.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

8.
The reaction of the halocarbyne [W(≡CBr)(CO)2(Tp*)] (Tp*=hydrotris(3,5‐dimethylpyrazol‐1‐yl)borate) with trimethylsilyl‐butadiyne, mediated by [Pd(PPh3)4] and CuI, affords the first pentadiynylidyne complex [W(≡CC≡CC≡CSiMe3)(CO)2(Tp*)]. Desilylation provides a general route to heterobimetallic pentacarbido complexes, including [(Tp*)(CO)2W(μ‐C5)(PPh3)2Ru(η‐C5H5)] and [(Ph3P)2(CO)HIr{(μ‐C5)W(CO)2(Tp*)}2].  相似文献   

9.
The acid–base reaction between Y(CH2SiMe3)3(thf)2 and the pyridyl‐functionalized cyclopentadienyl (Cp) ligand C5Me4H? C5H4N (1 equiv) at 0 °C afforded a mixture of two products: (η5:κ‐C5Me4? C5H4N)Y(CH2SiMe3)2(thf) ( 1 a ) and (η5:κ‐C5Me4? C5H4N)2YCH2SiMe3 ( 1 b ), in a 5:2 ratio. Addition of the same ligand (2 equiv) to Y(CH2SiMe3)3(thf)2, however, generated 1 b together with the novel complex 1 c , the first well defined yttrium mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)[C5HMe33‐CH2)‐C5H4N‐κ]Y(CH2SiMe3) containing a rare κ/η3‐allylic coordination mode in which the C? H bond activation occurs unexpectedly with the allylic methyl group rather than conventionally on Cp ring. If the central metal was changed to lutetium, the equimolar reaction between Lu(CH2SiMe3)3(thf)2 and C5Me4H? C5H4N exclusively afforded the bis(alkyl) product (η5:κ‐C5Me4? C5H4N)Lu(CH2SiMe3)2(thf) ( 2 a ). Similarly, the reaction between the ligand (2 equiv) and Lu(CH2SiMe3)3(thf)2 gave the mono(alkyl) complex (η5:κ‐C5Me4? C5H4N)2LuCH2SiMe3 ( 2 b ), in which no ligand redistribution was observed. Strikingly, treatment of Sc(CH2SiMe3)3(thf)2 with C5Me4H? C5H4N in either 1:1 or 1:2 ratio at 0 °C generated the first cyclopentadienide‐based scandium zwitterionic “tuck‐over” complex 3 , (η5:κ‐C5Me4? C5H4N)Sc(thf)[μ‐η51:κ‐C5Me3(CH2)‐C5H4N]Sc(CH2SiMe3)3. In the zwitterion, the dianionic ligand [C5Me3(CH2)‐C5H4N]2? binds both to Sc13+ and to Sc23+, in η5 and η1/κ modes. In addition, the reaction chemistry, the molecular structures, and the mechanism are also discussed in detail.  相似文献   

10.
A series of bis(σ)-borane complexes of Group 6 transition metals were prepared by direct dihydroborane coordination to the metal center. Reaction of [M(CO)3(PCy3)2] and two dihydroboranes [DurBH2] and [(Me3Si)2NBH2] (Dur=2,3,5,6-Me4C6H) yielded bis(σ)-borane complexes fac-[M(CO)3(PCy3){η2-(H2BR)}] (R=Dur; 1 : M=Cr, 2 : M=W; R=N(SiMe3)2; 3 : M=Cr, 4 : M=W). In the case of molybdenum, we have isolated an arene complex ( 5 ) with [DurBH2] in which the Dur group acts as a η6-bound ligand, and with [(Me3Si)2NBH2] a similar bis(σ)-borane complex was isolated, cis,trans-[Mo(CO)2(PCy3)22-(H2BN(SiMe3)2}] ( 6 ), with a different pattern of auxiliary ligands. The complexes were investigated by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and computational methods. Quantum theory of atoms in molecules (QTAIM) calculations demonstrated that the borane complexes may be described as pure bis(σ)-borane complexes rather than elongated or stretched examples given that the calculations do not show the presence of a ring-critical point (RCP) at the ring formed by the interactions of the B−H with metal center.  相似文献   

11.
Tetraallylsilane was functionalised using (chloromethyl)dimethylsilane to give the first generation chloromethyl terminated dendrimer 1. The resulting dendrimer was successfully reacted with K[CpM(CO)2] (Cp=η5-C5H5; M=Fe, Ru) to give Si[(CH2)3SiMe2CH2MCp(CO)2]4 functionalised dendrimers in satisfactory yield. Reaction of dendrimer 1 with NaI in acetone gave the -SiMe2CH2I functionalised dendrimer, while reactions of 1 with K[CpM(CO)3] (M=Mo, W, Re), Li[C5Me4H], Na[C5Me4H], the cobaloxime nucleophile or tert-BuLi were not successful.  相似文献   

12.
The reaction of the phosphinidene complex [Cp*P{W(CO)5}2] ( 1 a ) with di‐tert‐butylcarboimidophosphene leads to the P? C cage compound 6 and the Lewis acid–base adduct [Cp*P{W(CO)5}2(CNtBu)] ( 2 a ). In contrast, the arsinidene complex shows a different reactivity. At low temperatures, the arsaphosphene complex [{W(CO)5}{η2‐(Cp*)As?P(tBu)}{W(CO)5}] ( 3 ) is formed. At these temperatures, 3 reacts further with a second equivalent of carboimidophosphene to form [{W(CO)5}{η2‐{(Cp*)(tBu)P}As?P(tBu)}{W(CO)5}] ( 5 ), probably by the insertion of a phosphinidene unit (tBuP) into an As? C bond. In contrast, at room temperature 3 reacts further by a radical‐type reaction to form [{(tBu)P?As? As?P(tBu)}{W(CO)5}4] ( 4 ). Compound 4 is the first example of a neutral, 1,3‐butadiene analogue containing only mixed heavier Group 15 elements. It consists of two P?As double bonds connected by arsenic atoms.  相似文献   

13.
Investigations of Sb–Sb Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of SbCl3 with various transition metal metalates of the type K[MLn] [MLn = Ni(CO)Cp*, Fe(CO)Cp′, Co(CO)4; Cp* = η5‐C5Me5, Cp′ = η5‐C5H4Me] in the presence of [Cr(CO)5thf] have been studied. With K[Ni(CO)Cp*] and K[Fe(CO)2Cp′] the trigonal‐pyramidal complexes [(μ3‐Sb){Ni(CO)Cp*}3] ( 1 ) and [(μ3‐Sb){Fe · (CO)2Cp′}3] ( 2 ), respectively, are obtained. The reaction with K[Co(CO)4] leads to the tetrahedral cluster [Co3(CO)93‐Sb{Cr(CO)5})] ( 3 ) and the butterfly cluster [Co2(CO)6(μ‐SbCl)(μ‐SbCl{Cr(CO)5})] ( 4 ). All products are characterised by X‐ray crystal structure determination. In contrast to the corresponding [(CO)5CrPCl3] system forming P–P bonds, starting from SbCl3/[Cr(CO)5thf] does not cause a Sb–Sb bond formation.  相似文献   

14.
Treatment of Co4(CO)12 with an excess of trimethylsilylacetylene (TMSA) in the presence of tri(2‐thienyl)phosphine in THF at 25 °C for 2 hours yielded six compounds. Two pseudo‐octahedral, alkyne‐bridged tetracobalt clusters, [Co44‐η2‐HC≡CSiMe3)(CO)10(μ‐CO)2] ( 4 ) and [Co44‐η2‐HC≡CSiMe3)‐(CO)9(μ‐CO)2{P(C4H4S)3}] ( 6 ), along with an alkyne‐bridged dicobalt complex, [Co2(CO)5(μ‐HC≡CSiMe3)‐{P(C4H4S)3}] ( 5 ), were obtained as new compounds. The addition of the thienylphosphine ligand, in fact, facilitates the reaction rate. Reaction of an alkyne‐bridged dicobalt complex, [(η2‐H‐C≡C‐SiMe3)Co2(CO)6] ( 3 ), with a bi‐functional ligand, PPh(‐C≡C‐SiMe3)2, yielded an unexpected six‐membered, cyclic compound, {(Ph)(Me3Si‐C≡C)P‐[(η2‐C≡C‐SiMe3)Co2(CO)5]}2 ( 7 ). All of these new compounds were characterized by spectroscopic means; the solid‐state structures of ( 5 ), ( 6 ) and ( 7 ) have been established by X‐ray crystallography.  相似文献   

15.
The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH2] (Dur=2,3,5,6-Me4C6H) and [(Me3Si)2NBH2] led to the formation of bridging borylene complexes of the form [(Cp*RuH)2BR] (Cp*=C5Me5; 1 a : R=Dur; 1 b : R=N(SiMe3)2) through oxidative addition of the B−H bonds with concomitant hydrogen liberation. Employing the more electron-deficient dihydroborane [3,5-(CF3)2-C6H3BH2] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)4[(Cp*Ru)2B4H5(3,5-(CF3)2C6H3)4] ( 4 ), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido-[1,2(Cp*Ru)2(μ-H)B4H9] ( I ) indicates that there appear to be no classical σ-bonds between the boron atoms in complex I , whereas in the case of 4 the B4 chain better resembles a network of three B−B σ bonds, the central bond being significantly weaker than the other two.  相似文献   

16.
Summary Li[Si(SiMe3)3](1) reacts with CpL2FeBr, both as a nucleophile replacing the halide ligand and as a reducing agent. Reaction with Cp(CO)2FeBr yields [Cp(CO)2Fe]2 and Cp(CO)2FeSi(SiMe3)3 (3a) as the major and minor (8%) products, respectively. From the reaction of (1) with Cp(CO)-(PPh3) FeBr, only Cp(CO)(PPh3)FeSi(SiMe3)3 (3b) (10%) was isolated, whereas reaction of(1) with Cp(Ph2PCH2-CH2PPh2)-, FeBr only results in decomposition.Part II of this series: Ref.(1); Part I: Ref.(2)  相似文献   

17.
New zincocenes [ZnCp′2] ( 2 – 5 ) with substituted cyclopentadienyl ligands C5Me4H, C5Me4tBu, C5Me4SiMe2tBu and C5Me4SiMe3, respectively, have been prepared by the reaction of ZnCl2 with the appropriate Cp′‐transfer reagent. For a comparative structural study, the known [Zn(C5H4SiMe3)2] ( 1 ), has also been investigated, along with the mixed‐ring zincocenes [Zn(C5Me5)(C5Me4SiMe3)] ( 6 ) and [Zn(C5Me5)(C5H4SiMe3)] ( 7 ), the last two obtained by conproportionation of [Zn(C5Me5)2] with 5 or 1 , as appropriate. All new compounds were characterised by NMR spectroscopy, and by X‐ray methods, with the exception of 7 , which yields a side‐product ( C ) upon attempted crystallisation. Compounds 5 and 6 were also investigated by 13C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp′ ligands, while 3 and 4 exhibit slipped‐sandwich geometries. Compounds 5 and 6 have rigid, η51(σ) structures, in which the monohapto C5Me4SiMe3 ligand is bound to zinc through the silyl‐bearing carbon atom, forming a Zn? C bond of comparable strength to the Zn? Me bond in ZnMe2. Zincocene 5 has dynamic behaviour in solution, but a rigid η51(σ) structure in the solid state, as revealed by 13C CPMAS NMR studies, whereas for 6 the different nature of the Cp′ ligands and of the ring substituents of the η1‐Cp′ group (Me and SiMe3) have permitted observation for the first time of the rigid η51 solution structure. Iminoacyl compounds of composition [Zn(η5‐C5Me4R)(η1‐C(NXyl)C5Me4R)] resulting from the reactions of some of the above zincocenes and CNXyl (Xyl=2,6‐dimethylphenylisocyanide) have also been obtained and characterised.  相似文献   

18.
Hydrogenolysis of the scorpionate‐supported barium alkyl complex (TpAd,iPr)Ba[CH(SiMe3)2](THF) (TpAd,iPr=hydrotris(3‐adamantyl‐5‐isopropyl‐pyrazolyl)borate) afforded the dinuclear barium hydrido complex [(TpAd,iPr)Ba(μ‐H)]2 ( 2 ), which was characterized by NMR spectroscopy and single‐crystal X‐ray analysis. Exposure of 2 with 1 atm of CO resulted in a reductive coupling process to form the cis‐ethendiolate dianion ( 3 ). Reaction of 2 with one equivalent of PhC≡C−C≡CPh gave barium 1,4‐diphenyl‐2‐butyne‐1,4‐diyl complex {[(TpAd,iPr)Ba]2(PhCH−C≡C−CHPh) ( 4 ).  相似文献   

19.
The phosphinidene complex [Cp*P{W(CO)5}2] ( 1 ; Cp*=C5Me5) reacted with malononitrile to give the 1,2‐dihydro‐1,3,2‐diazaphosphinine derivative 2 . The reaction of 1 with 1,4‐benzodinitrile gave [1,4‐{{W(CO)5}2P‐N=C(Cp*)}2(C6H4)] ( 3 ), the first example of a cumulene‐like aminophosphinidene complex. The reaction of 1 with aniline gave the aminophosphinidene complex [(Ph)N(H)P{W(CO)5}2] ( 4 ). To compare the reactivity of benzonitrile and aniline with 1 , the phosphinidene complex 1 was reacted with three different isomers of aminobenzonitrile (2‐, 3‐, and 4‐aminobenzonitrile). These reactions gave an insight into the reaction pathway of 1 with benzonitrile derivatives. Compounds 5 , 6 a , 6 b , and 7 , which are derivatives of 1,2‐dihydro‐1,3,2‐diazaphosphinine or benzo‐2H‐1,2‐azaphospholes, were, as well as all other products, characterized by mass spectrometry, NMR and IR spectroscopy, and X‐ray structure analysis.  相似文献   

20.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号