首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, . Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator . Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to . We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional to the Bennett acceptance ratio () estimator. We show that, for Gaussian unidirectional work distributions, is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that and perform better than and , for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
Detailed molecular orbital and bonding analyses reveal the existence of both fluxional σ- and π-bonds in the global minima Cs ( 1 ) and Cs MB18 ( 3 ) and transition states Cs ( 2 ) and Cs ( 4 ) of dianion and monoanions (M = K, Rb, and Cs). It is the fluxional bonds that facilitate the fluxional behaviors of the quasi-planar and half-sandwich which possess energy barriers smaller than the difference of the corresponding zero-point corrections. © 2019 Wiley Periodicals, Inc.  相似文献   

3.
In this work, we investigated the nonlinear optical (NLO) properties of excess electron electride molecules of M[Cu(Ag)@(NH3)n](M = Be, Mg and Ca; n = 1–3) using density functional theory (DFT). This electride molecules consist of an alkaline-earth (Be, Mg and Ca) together with transition metal (Cu and Ag) doped in NH3 cluster. The natural population analysis of charge and their highest occupied molecular orbital suggests that the M[Cu(Ag)@(NH3)n] compound has excess electron like alkaline-earth metal form double cage electrides molecules, which exhibit a large static first hyperpolarizability () (electron contribution part) and one of which owns a peak value of 216,938 (a.u.) for Be[Ag@(NH3)2] and vibrational harmonic first hyperpolarizability () (nuclear contribution part) values and the ratio of /, namely, η values from 0.02 for Be[Ag@(NH3)] to 0.757 for Mg[Ag@(NH3)3]. The electron density contribution in different regions on values mainly come from alkaline-earth and transition metal atoms by first hyperpolarizability density analysis, and also explains the reason why values are positive and negative. Moreover, the frequency-dependent values β(−2ω,ω,ω) are also estimated to make a comparison with experimental measures. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
5.
Quantum chemical calculations on model copper paddlewheel (CPW) complexes of general formula [Cu2(μ2-O2CR)4L2] establish two local coordination geometries at the metal centers depending on the balance between equatorial and axial ligand fields. When the equatorial field is stronger than the axial field (large ligand field asymmetry), dominates the stereochemical activity of the d9 shell resulting in a relatively rigid, “orbitally directed” planar or square pyramidal structure. However, if the axial field is significantly increased, or the equatorial field moderately weakened, a small ligand field asymmetry results and both and are involved in the stereochemical activity. This results in a “plastic,” distorted trigonal bipyramidal geometry where the former axial ligand moves into one of the original four equatorial positions. Linkers already used to synthesize zinc-dabco MOFs (dabco = 1,4-diazabicyclo[2.2.2]octane) are shown to generate plastic CPW secondary building unit analogs with potential implications for conferring breathing behavior for MOFs which would currently be assumed to be rigid. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
The infrared (IR) and Raman spectra of eight substitutional carbon defects in silicon are computed at the quantum mechanical level by using a periodic supercell approach based on hybrid functionals, an all electron Gaussian type basis set and the CRYSTAL code. The single substitutional C s case and its combination with a vacancy (C sV and C sSiV) are considered first. The progressive saturation of the four bonds of a Si atom with C is then examined. The last set of defects consists of a chain of adjacent carbon atoms C, with i = 1–3. The simple substitutional case, C s, is the common first member of the three sets. All these defects show important, very characteristic features in their IR spectrum. One or two C related peaks dominate the spectra: at 596 cm−1 for C s (and C sSiV, the second neighbor vacancy is not shifting the C s peak), at 705 and 716 cm−1 for C sV, at 537 cm−1 for C and C (with additional peaks at 522, 655 and 689 for the latter only), at 607 and 624 cm−1, 601 and 643 cm−1, and 629 cm−1 for SiC, SiC, and SiC, respectively. Comparison with experiment allows to attribute many observed peaks to one of the C substitutional defects. Observed peaks above 720 cm−1 must be attributed to interstitial C or more complicated defects.  相似文献   

7.
Anionic species of aspartic acid, Asp, having a zwitterionic backbone and a deprotonated side chain, appears to be a good example for analyzing dipole-ion and ion pair interactions. Density functional theory calculations were herein performed to investigate the low energy conformers of Asp embedded in a dielectric continuum modeling an aqueous environment, through a scan of the potential energy as a function of the side chain (χ1, χ2) torsion angles. The most energetically favorable conformers having g+g and gg+ side chain orientations are found to be stabilized by charge-enhanced intramolecular H-bonding involving the positively charged () and the two negatively charged (COO) groups. These conformers were further used to analyze Asp + nW clusters (W: water, n = 1 or 3), and Asp/Asp pair formation. COO groups were found to be the most attractive sites for hosting a water molecule (binding energy: −6.0 ± 1.5 kcal/mol), compared to groups (binding energy: −4.7 ± 1.1 kcal/mol). Energy separation between g+g and gg+ conformers increases upon explicit hydration. Asp/Asp ion pairs, stabilized by the interaction between the group of a partner and the COO group of the other, shows a quite constant binding energy (−8.1 ± 0.2 kcal/mol), whatever the pair type, and the relative orientation of the two interacting partners. This study suggests a first step to achieve a more realistic image of intermolecular interactions in aqueous environment, especially upon increasing concentration. It can also be considered as a preliminary attempt to assess the interactions of the Lys+…Asp/Glu ion pairs stabilizing intra- and interchain interactions in proteins.  相似文献   

8.
We demonstrate a novel technique to obtain singular-value decomposition (SVD) of the coupled-cluster triple excitations amplitudes, . The presented method is based on the Golub-Kahan bidiagonalization strategy and does not require to be stored. The computational cost of the method is comparable to several coupled cluster singles and doubles (CCSD) iterations. Moreover, the number of singular vectors to be found can be predetermined by the user and only those singular vectors which correspond to the largest singular values are obtained at convergence. We show how the subspace of the most important singular vectors obtained from an approximate triple amplitudes tensor can be used to solve equations of the CC3 method. The new method is tested for a set of small and medium-sized molecular systems in basis sets ranging in quality from double- to quintuple-zeta. It is found that to reach the chemical accuracy (≈1 kJ/mol) in the total CC3 energies as little as 5 − 15% of SVD vectors are required. This corresponds to the compression of the amplitudes by a factor of about 0.0001 − 0.005 . Significant savings are obtained also in calculation of interaction energies or rotational barriers, as well as in bond-breaking processes. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
In the present work, mechanism of the O2(1Δg) generation from the reaction of the dissolved Cl2 with H2O2 in basic aqueous solution has been explored by the combined ab initio calculation and nonadiabatic dynamics simulation, together with different solvent models. Three possible pathways have been determined for the O2(1Δg) generation, but two of them are sequentially downhill processes until formation of the OOCl complex with water, which are of high exothermic character. Once the complex is formed, singlet molecular oxygen is easily generated by its decomposition along the singlet-state pathway. However, triplet molecular oxygen of O2() can be produced with considerable probability through nonadiabatic intersystem crossing in the 1Δg/ intersection region. It has been found that the coupled solvent, heavy-atom, and nonadiabatic effects have an important influence on the quantum yield of the O2(1Δg) generation. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
11.
In cluster studies, the isoelectronic replacement strategy has been successfully used to introduce new elements into a known structure while maintaining the desired topology. The well-known penta-atomic 18 valence electron (ve) species and its Al/Si or Al/Si+ isoelectronically replaced clusters CAl3Si, CAl2Si2, , and , all possess the same anti-van't Hoff/Le Bel skeletons, that is, nontraditional planar tetracoordinate carbon (ptC) structure. In this article, however, we found that such isoelectronic replacement between Si and Al does not work for the 16ve-CAl4 with the traditional van't Hoff/Le Bel tetrahedral carbon (thC) and its isoelectronic derivatives CAl3X (X = Ga/In/Tl). At the level of CCSD(T)/def2-QZVP//B3LYP/def2-QZVP, none of the global minima of the 16ve mono-Si-containing clusters CAl2SiX+ (X = Al/Ga/In/Tl) maintains thC as the parent CAl4 does. Instead, X = Al/Ga globally favors an unusual ptC structure that has one long C─X distance yet with significant bond index value, and X = In/Tl prefers the planar tricoordinate carbon. The frustrated formation of thC in these clusters is ascribed to the CSi bonding that prefers a planar fashion. Inclusion of chloride ion would further stabilize the ptC of CAl2SiAl+ and CAl2SiGa+. The unexpectedly disclosed CAl2SiAl+ and CAl2SiGa+ represent the first type of 16ve-cationic ptCs with multiple bonds. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
We study the kinetics of hydrogen sorption in Mg-Ti-H nanoparticles prepared by gas phase condensation of mixed Mg-Ti vapors under a H2-containing atmosphere. Four samples with different Ti contents from 14 to 63 at.% Ti are examined in the 100–150 °C range. The hydrogen absorption kinetics coupled with the formation of MgH2 can be described by a nucleation and growth model. The activation energy is in the range kJ/mol and the rate constant (at 150 °C) increases from s−1 to s−1 with increasing Ti content. Hydrogen desorption is well modeled by a sequence of surface-limited and contracting-volume kinetics, except at the highest Ti content where nucleation and growth is observed. The activation energy of surface-limited kinetics is /mol. The rate constant (at 150 °C) increases from s−1 to s−1 with the Ti content. These results open an unexplored kinetic window for Mg-based reversible hydrogen storage close to ambient temperature.  相似文献   

13.
A detailed chemical kinetic model for oxidation of methylamine has been developed, based on theoretical work and a critical evaluation of data from the literature. The rate coefficients for the reactions of CHNH + O CHNH / CHNH + HO, CHNH + H CH + NH, CHNH CHNH, and CHNH + O CHNH + HO were calculated from ab initio theory. The mechanism was validated against experimental results from batch reactors, flow reactors, shock tubes, and premixed flames. The model predicts satisfactorily explosion limits for CHNH and its oxidation in a flow reactor. However, oxidation in the presence of nitric oxide, which strongly promotes reaction at lower temperatures, is only described qualitatively. Furthermore, calculated flame speeds are higher than reported experimental values; the model does not capture the inhibiting effect of the NH group in CHNH compared to CH. More work is desirable to confirm the products of the CHNH + NO reaction and to look into possible pathways to NH in methylamine oxidation.  相似文献   

14.
Dr. Luís P. Viegas 《Chemphyschem》2023,24(16):e202300259
Experimental work on the OH-initiated oxidation reactions of fluorotelomer aldehydes (FTALs) strongly suggests that the respective rate coefficients do not depend on the size of the CxF2x+1 fluoroalkyl chain. FTALs hence represent a challenging test to our multiconformer transition state theory (MC-TST) protocol based on constrained transition state randomization (CTSR), since the calculated rate coefficients should not show significant variations with increasing values of . In this work we apply the MC-TST/CTSR protocol to the cases and calculate both rate coefficients at 298.15 K with a value of cm3 molecule−1 s−1, practically coincident with the recommended experimental value of kexp= cm3 molecule−1 s−1. We also show that the use of tunneling corrections based on improved semiclassical TST is critical in obtaining Arrhenius-Kooij curves with a correct behavior at lower temperatures.  相似文献   

15.
Carbon 1s core-hole excitation of the molecular anion C2 has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo–double-detachment shows a pronounced vibrational structure associated with and core excitations of the C2 ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 molecular anion by 0.2 Å upon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 and core-excited levels.  相似文献   

16.
The preparation of novel technetium oxides, their characterization and the general investigation of technetium chemistry are of significant importance, since fundamental research has so far mainly focused on the group homologues. Whereas the structure chemistry of technetium in strongly oxidizing media is dominated by the anion, our recent investigation yielded the new anion. Brown single crystals of Ba[TcO3N] were obtained under hydrothermal conditions starting from Ba(OH)2 ⋅ 8H2O and NH4[TcO4] at 200 °C. crystallizes in the monoclinic crystal system with the space group P21/n (a=7.2159(4) Å, b=7.8536(5) Å, c=7.4931(4) Å and β=104.279(2)°). The crystal structure of consists of isolated tetrahedra, which are surrounded by Ba2+ cations. XANES measurements complement the oxidation state +VII for technetium and Raman spectroscopic experiments on Ba[TcO3N] single crystals exhibit characteristic Tc−O and Tc−N vibrational modes.  相似文献   

17.
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive activation. Here, we studied the role of the substrate in the key elementary reaction leading to activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme Fe center through thermoneutral H2O reorientation and exothermic binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme Fe sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme Fe in agreement with a strategy that avoids unproductive activation.  相似文献   

18.
The multi state triply paired coupled adiabatic electronic states of , symmetries for the title ion have been modelled using the triply paired coupled eigen valued functions with the principal aim of getting a set of well optimized triply paired coupled functions, capable of explaining all the microscopic topograhical features present in the chosen coupled electronic states. The high quality size truncated dynamically correlated points at the limit of complete basis set (CBS) were utilized for this purpose. The proposed model function are presented in an “easy to understand” linear form with respect to the pre-defined variables which are directly dependent on the diabatic potentials and coupling strengths found in the diabatic matrix. Its most important feature (an essential criterion to be selected for modelling the triply degenerate seam pathway) is the ability to predict the existence of an uniquely defined triply degenerate iso-energetic geometry among the chosen coupled states in addition to the prediction of the existence of many doubly degenerate iso-energetic geometries in those states and hence can be adaptable to any general molecular system where such triply or doubly degenerate geometries are believed to occur. The title ion is one among them where many doubly iso-energetic geometries were located but not the triply degenerate one as it is a three atomic system unlike the polyatomic case where the triply degenerate geometry will most likely to be found. To do this work, one requires the knowledge of four asymptotic diatomic curves upon atom+diatom dissociation whose correct correlated spectroscopic states are O2+ , O2 , O2+ , OH+ . The quality and the characteristics of analytical surface of the ion is discussed well in detail.  相似文献   

19.
Two pressure-induced phase transitions have been theoretically studied in the layered iron phosphorus triselenide (FePSe3 ). Topological analysis of chemical bonding in FePSe3 has been performed based on the results of first-principles calculations within the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-Fock-DFT B3LYP functional. The first transition at about 6 GPa is accompanied by the symmetry change from to C2/m , whereas the semiconductor-to-metal transition (SMT) occurs at about 13 GPa leading to the symmetry change from C2/m to . We found that the collapse of the band gap at about 13 GPa occurs due to changes in the electronic structure of FePSe3 induced by relative displacements of phosphorus or selenium atoms along the c-axis direction under pressure. The results of the topological analysis of the electron density and its Laplacian demonstrate that the pressure changes not only the interatomic distances but also the bond nature between the intralayer and interlayer phosphorus atoms. The interlayer P–P interactions are absent in two non-metallic FePSe3 phases while after SMT the intralayer P–P interactions weaken and the interlayer P–P interactions appear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号