首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Various properties of typical structures of water clusters in the n = 2–34 size regime with the change of cluster size have been systematically explored. Full optimizations are carried out for the structures presented in this article at the Hartree–Fock (HF) level using the 6‐31G(d) basis set by taking into account the positions of all atoms within the cluster. The influence of the HF level on the results has been reflected by the comparison between the binding energies of (H2O)n (n = 2–6, 8, 11, 13, 20) calculated at the HF level and those obtained from high‐level ab initio calculations at the second‐order Møller–Plesset (MP2) perturbation theory and the coupled cluster method including singles and doubles with perturbative triples (CCSD(T)) levels. HF is inaccurate when compared with MP2 and CCSD(T), but it is more practical and allows us to study larger systems. The computed properties characterizing water clusters (H2O)n (n = 2–34) include optimal structures, structural parameters, binding energies, hydrogen bonds, charge distributions, dipole moments, and so on. When the cluster size increases, trends of the above various properties have been presented to provide important reference for understanding and describing the nature of the hydrogen bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

2.
The relative stability of different clusters of thiourea dioxide (TDO) in water is examined using gas phase quantum chemical calculations at the MP2 and B3LYP level with 6‐311++G(d,p) basis set. The possible equilibrium structures and other energetic and geometrical data of the thiourea dioxide clusters, TDO‐(H2O)n (n is the number of water molecules), are obtained. The calculation results show that a strong interaction exists between thiourea dioxide and water molecules, as indicated by the binding energies of the TDO clusters progressively increased by adding water molecules. PCM model is used to investigate solvent effect of TDO. We obtained a negative hydration energy of ?20.6 kcal mol?1 and free‐energy change of ?21.0 kcal mol?1 in hydration process. On the basis of increasing binding energies with adding water molecules and a negative hydration energy by PCM calculation, we conclude thiourea dioxide can dissolve in water molecules. Furthermore, the increases of the C? S bond distance by the addition of water molecules show that the strength of the C? S bonds is attenuated. We find that when the number of water molecules was up to 5, the C? S bonds of the clusters, TDO‐(H2O)5 and TDO‐(H2O)6 were ruptured. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
Ternary clusters (NH3)·(H2SO4)·(H2O)n have been widely studied. However, the structures and binding energies of relatively larger cluster (n > 6) remain unclear, which hinders the study of other interesting properties. Ternary clusters of (NH3)·(H2SO4)·(H2O)n, n = 0-14, were investigated using MD simulations and quantum chemical calculations. For n = 1, a proton was transferred from H2SO4 to NH3. For n = 10, both protons of H2SO4 were transferred to NH3 and H2O, respectively. The NH4+ and HSO4 formed a contact ion-pair [NH4+-HSO4] for n = 1-6 and a solvent separated ion-pair [NH4+-H2O-HSO4] for n = 7-9. Therefore, we observed two obvious transitions from neutral to single protonation (from H2SO4 to NH3) to double protonation (from H2SO4 to NH3 and H2O) with increasing n. In general, the structures with single protonation and solvated ion-pair were higher in entropy than those with double protonation and contact ion-pair of single protonation and were thus preferred at higher temperature. As a result, the inversion between single and double protonated clusters was postponed until n = 12 according to the average binding Gibbs free energy at the normal condition. These results can serve as a good start point for studies of the other properties of these clusters and as a model for the solvation of the [H2SO4-NH3] complex in bulk water.  相似文献   

4.
Various properties (such as optimal structures, structural parameters, hydrogen bonds, natural bond orbital charge distributions, binding energies, electron densities at hydrogen bond critical points, cooperative effects, and so on) of gas phase ethanol–(water)n (n = 1–5) clusters with the change in the number of water molecules have been systematically explored at the MP2/aug‐cc‐pVTZ//MP2/6‐311++G(d,p) computational level. The study of optimal structures shows that the most stable ethanol‐water heterodimer is the one where exists one primary hydrogen bond (O? H…O) and one secondary hydrogen bond (C? H …O) simultaneously. The cyclic geometric pattern formed by the primary hydrogen bonds, where all the molecules are proton acceptor and proton donor simultaneously, is the most stable configuration for ethanol–(water)n (n = 2–4) clusters, and a transition from two‐dimensional cyclic to three‐dimensional structures occurs at n = 5. At the same time, the cluster stability seems to correlate with the number of primary hydrogen bonds, because the secondary hydrogen bond was extremely weaker than the primary hydrogen bond. Furthermore, the comparison of cooperative effects between ethanol–water clusters and gas phase pure water clusters has been analyzed from two aspects. First of all, for the cyclic structure, the cooperative effect in the former is slightly stronger than that of the latter with the increasing of water molecules. Second, for the ethanol–(water)5 and (water)6 structure, the cooperative effect in the former is also correspondingly stronger than that of the latter except for the ethanol–(water)5 book structure. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The dynamics and mechanisms of proton dissociation and transfer in hydrated phosphoric acid (H3PO4) clusters under excess proton conditions were studied based on the concept of presolvation using the H3PO4–H3O+nH2O complexes (n = 1–3) as the model systems and ab initio calculations and Born–Oppenheimer molecular dynamics (BOMD) simulations at the RIMP2/TZVP level as model calculations. The static results showed that the smallest, most stable intermediate complex for proton dissociation (n = 1) is formed in a low local‐dielectric constant environment (e.g., ε = 1), whereas proton transfer from the first to the second hydration shell is driven by fluctuations in the number of water molecules in a high local‐dielectric constant environment (e.g., ε = 78) through the Zundel complex in a linear H‐bond chain (n = 3). The two‐dimensional potential energy surfaces (2D‐PES) of the intermediate complex (n = 1) suggested three characteristic vibrational and 1H NMR frequencies associated with a proton moving on the oscillatory shuttling and structural diffusion paths, which can be used to monitor the dynamics of proton dissociation in the H‐bond clusters. The BOMD simulations over the temperature range of 298–430 K validated the proposed proton dissociation and transfer mechanisms by showing that good agreement between the theoretical and experimental data can be achieved with the proposed rate‐determining processes. The theoretical results suggest the roles played by the polar solvent and iterate that insights into the dynamics and mechanisms of proton transfer in the protonated H‐bond clusters can be obtained from intermediate complexes provided that an appropriate presolvation model is selected and that all of the important rate‐determining processes are included in the model calculations. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Interactions between molecular hydrogen and ions are of interest in cluster science, astrochemistry and hydrogen storage. In dynamical simulations, H2 molecules are usually modelled as point particles, an approximation that can fail for anisotropic interactions. Here, we apply an adiabatic separation of the H2 rotational motion to build effective pseudoatom-ion potentials and in turn study the properties of (H2)nNa+/Cl clusters. These interaction potentials are based on high-level ab initio calculations and Improved Lennard-Jones parametrizations, while the subsequent dynamics has been performed by quantum Monte Carlo calculations. By comparisons with simulations explicitly describing the molecular rotations, it is concluded that the present adiabatic model is very adequate. Interestingly, we find differences in the cluster stabilities and coordination shells depending on the spin isomer considered (para- or ortho-H2), especially for the anionic clusters.  相似文献   

7.
The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine‐dimer radical‐anion clusters, I2.? ? n H2O (n=1–10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum‐energy structure by applying a Monte Carlo simulated annealing procedure including spin–orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I? I stretching band but enhances the intensity of the O? H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O? H bonds in a cyclic water network are observed for I2.? ? n H2O clusters with n≥3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite‐size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I2.? in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl2.? and Br2.?.  相似文献   

8.
The cooperative effects of hydrogen bonding in small water clusters (H2O)n (n=3–6) have been studied by using the partition of the electronic energy in accordance with the interacting quantum atoms (IQA) approach. The IQA energy splitting is complemented by a topological analysis of the electron density (ρ( r )) compliant with the quantum theory of atoms‐in‐molecules (QTAIM) and the calculation of electrostatic interactions by using one‐ and two‐electron integrals, thereby avoiding convergence issues inherent to a multipolar expansion. The results show that the cooperative effects of hydrogen bonding in small water clusters arise from a compromise between: 1) the deformation energy (i.e., the energy necessary to modify the electron density and the configuration of the nuclei of the isolated water molecules to those within the water clusters), and 2) the interaction energy (Eint) of these contorted molecules in (H2O)n. Whereas the magnitude of both deformation and interaction energies is enhanced as water molecules are added to the system, the augmentation of the latter becomes dominant when the size of the cluster is increased. In addition, the electrostatic, classic, and exchange components of Eint for a pair of water molecules in the cluster (H2O)n?1 become more attractive when a new H2O unit is incorporated to generate the system (H2O)n with the last‐mentioned contribution being consistently the most important part of Eint throughout the hydrogen bonds under consideration. This is opposed to the traditional view, which regards hydrogen bonding in water as an electrostatically driven interaction. Overall, the trends of the delocalization indices, δ(Ω,Ω′), the QTAIM atomic charges, the topology of ρ( r ), and the IQA results altogether show how polarization, charge transfer, electrostatics, and covalency contribute to the cooperative effects of hydrogen bonding in small water clusters. It is our hope that the analysis presented in this paper could offer insight into the different intra‐ and intermolecular interactions present in hydrogen‐bonded systems.  相似文献   

9.
The influence of carboxylic acids on water nucleation in the gas phase has been explored in the supersonic expansion of water vapour mixed with acetic acid (AcA) at various concentrations. The sodium‐doping method has been used to detect clusters produced in supersonic expansions by using UV photoionisation. The mass spectra obtained at lower acid concentrations show well‐detected Na+?AcA(H2O)n and Na+?AcA2(H2O)n clusters up to 200 Da and, in the best cooling expansions, emerging Na+?AcAm(H2O)n signals at higher masses and unresolved signals that extend beyond m/e values >1000 Da. These signals, which increase with increasing acid content in water vapour, are an indication that the cluster growth taking place arises from mixed water–acid clusters. Theoretical calculations show that small acid–water clusters are stable and their formation is even thermodynamically favoured with respect to pure water clusters, especially at lower temperatures. These findings suggest that acetic acid may play a significant role as a pre‐nucleation embryo in the formation of aerosols in wet environments.  相似文献   

10.
11.
The hydrogen evolution reaction (HER) of water with metallic aluminum-based materials provides an important way to address the global energy challenge; however, fundamental mechanism and reaction dynamics governing the chemical and electronic properties remain a debated research topic. Here we further study the HER mechanisms for water splitting on typical 13-atoms clusters, Al12Ga and Al13, by first-principles DFT calculations. We noted that the doping of a Ga atom into the Al13 cluster could reduce the transition state barrier for H2O dissociation on the metal cluster. Furthermore, it is interesting that the second water molecule prefers to adsorb on the same metal site giving rise to both thermodynamically and kinetically favorable reaction pathways. Based on the well-established complementary active sites (CAS) mechanism for metal cluster reactivity, we provide insights into the reaction dynamics of such metal clusters with two water molecules, which also sheds light on the Eley-Rideal and Langmuir-Hinshelwood mechanisms in surface science. Natural bond orbitals (NBO) analysis was conducted to evaluate the donor-acceptor charge-transfer interactions between the cluster and the nucleophilic reagent. These results gain a better understanding of the mechanism for water reacting with aluminum-based materials.  相似文献   

12.
Calculations are presented for the structure and the isomerization reaction of various conformers of the bare serine, neutral serine–(H2O)n and serine zwitterion–(H2O)n (n = 1, 2) clusters. The effects of binding water molecules on the relative stability and the isomerization processes are examined. Hydrogen bonding between serine and the water molecule(s) may significantly affect the relative stability of conformers of the neutral serine–(H2O)n (n = 1, 2) clusters. The sidechain (OH group) in serine is found to have a profound effect on the structure and isomerization of serine–(H2O)n (n = 1, 2) clusters. Conformers with the hydrogen bonding between water and the hydroxyl group of serine are predicted. A detailed analysis is presented of the isomerization (proton transfer) pathways between the neutral serine–(H2O)2 and serine zwitterion–(H2O)2 clusters by carrying out the intrinsic reaction coordinate analysis. At least two water molecules need to bind to produce the stable serine zwitterion–water cluster in the gas phase. The isomerization for the serine–(H2O)2 cluster proceeds by the concerted double and triple proton transfer mechanism occurring via the binding water molecules, or via the hydroxyl group. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   

14.
One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3O4?MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand‐free tetrameric CanMn4?nO4+ (n=0–4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas‐phase reactivity experiments with D2O and H218O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono‐calcium cluster CaMn3O4+ is observed to oxidize water via elimination of hydrogen peroxide. First‐principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3O4+ as well as the role of calcium.  相似文献   

15.
Small AgnPd (n = 5) clusters and their hydrides AgnPdH (n = 5) have been studied by density functional theory calculations. For bare clusters, the structures in which the Pd atom has a maximum number of neighboring Ag atoms tend to be energetically favorable. Hydrogen prefers binding to Ag? Pd bridge site of AgnPd clusters except for Ag5Pd. The binding energy has a strong odd–even oscillation. The electron transfers are from Ag atoms to Pd in bare clusters and are from metal clusters to H in cluster hydrides. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
In this paper, the interaction between hydrogen peroxide (HP) and water were systemically studied by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) and ab initio method. The results show that the optimized geometries, interaction energies and dipole moments of hydrated HP clusters HP(H2O) n (n = 1–6) calculated by ABEEM/MM model are fairly consistent with the MP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ results. The ABEEM/MM results indicate that n = 4 is the transition state structure from 2D planar structure to 3D network structure. The variations of the average hydrogen bond length with the increasing number of water molecules given by ABEEM/MM model agree well with those of ab initio studies. Moreover, the radial distribution functions (RDFs) of water molecule around HP in HP aqueous solution have been analyzed in detail. It can be confirmed that HP is a good proton donor and poor proton acceptor in aqueous solution by analysis of the RDFs.  相似文献   

17.
Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)n = 2–6+] with density functional theory (DFT), Möller–Plesset second‐order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O+) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high‐level ab initio results. To understand the ionization process of water clusters, DFT‐ and MP2‐based Born‐Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen‐like form with the hydronium cation instead of a Zundel‐like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5+ (5sL4A) cluster tends to form with a detached water molecule (H2O). © 2013 Wiley Periodicals, Inc.  相似文献   

18.
通过溶剂蒸发法,咪唑、18-冠醚-6和铁氰酸在甲醇溶液内反应,获得了氰基合铁配合物氢键型笼状超分子晶体材料(C3H5N2)3[Fe(CN)6]·2(18-crown-6)·2H2O(1)。通过变温X射线单晶衍射、红外光谱、元素分析、热重分析(TG)、差示扫描量热法(DSC)和变温-介电常数测试等对该晶体进行了结构、热能及电性能分析。该晶体的空间群为P21/c,属于单斜晶系,结构显示氰基合铁阳离子、水分子和咪唑阳离子在空间内通过氢键的相互作用形成以铁原子为顶点的三维笼状结构。温度变化触发笼状结构突变,同时引起[Fe(CN)6]3-框架内超分子发生动态摆动,从而引起晶体结构发生相变,该结构相变温度区间伴随介电物理特性阶梯状变化,从220到280 K,介电常数由38变为43,且可逆。温度在270 K之后的介电突然跃升是水汽影响导致。  相似文献   

19.
Density-functional theory calculations of (TiO2)n clusters (n = 1–5) in the gas phase and adsorbed on pristine graphene as well as graphene quantum dots are presented. The cluster adsorption is found to be dominated by van der Waals forces. The electronic structure and in particular the excitation energies of the bare clusters and the TiO2/graphene composites are found to vary largely in dependence on the size of the respective constituents. This holds in particular for the energy and the spatial localization of the highest occupied and lowest unoccupied molecular orbitals. In addition to a substantial gap narrowing, a pronounced separation of photoexcited electrons and holes is predicted in some instances. This is expected to prolong the lifetime of photoexcited carriers. Altogether, TiO2/graphene composites are predicted to be promising photocatalysts with improved electronic and photocatalytic properties compared to bulk TiO2.  相似文献   

20.
Adsorption of pyridine on Nin‐clusters (with n = 2,3,4) is studied by quantum chemical calculations at B3LYP/LANL2DZ and B3LYP/6‐311G** levels. First, Nin‐clusters are investigated for accessible structure and electronic states. The lowest electronic state with four unpaired electrons is predicted for Ni4‐cluster based on geometry and electronic structure, showing that the cluster stability nicely depends on number of unpaired electrons. Correction for basis set superposition error of metal‐metal bond is appreciable and has increasing effect on cluster binding energy. Next, adsorption of pyridine in planar and vertical adsorption modes is investigated on rhombus Ni4‐cluster. The vertical mode is found (at B3LYP/6‐311G** level) as the most favorable adsorption mode. Adsorption energy (ΔEads) depends on cluster size; adsorption on Ni4‐cluster is most favorable with ΔEads = ?207.33 kJ/mol. The natural bond orbital analysis reveals the charge transfer in adsorbate/metal‐cluster. Results of investigations for the Ni2‐ and Ni3‐cluster are also presented. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号