首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative densitometric thin-layer chromatographic method for determination of nefopam hydrochloride in pharmaceutical preparations has been established and validated. Nefopam from the formulations was separated and identified on silica gel 60 F254 TLC plates with chloroform-methanol-glacial acetic acid (9: 2: 0.1, v/v/v) as mobile phase. Densitometric quantification was performed at absorbance maximum 266 nm. The method was validated for linearity, sensitivity, precision and recovery in accordance with ICH guidelines. The presented method is selective and specific with potential application in pharmaceutical analysis. Nefopam hydrochloride was subjected to acidic and alkaline hydrolysis at different temperatures. As the method could effectively separate the drug from its degradation products, it can be employed as a stability indicating one.  相似文献   

2.
A thin-layer chromatographic/densitometric method was developed for the identification and quantitation of oxytetracycline, tiamulin, lincomycin, and spectinomycin in veterinary preparations. Silica gel-coated thin layer chromatography plates and 2 mobile phases were used to separate these constituents. The appropriate compositions of the suitable mobile phases were established: 10% citric acid solution-n-hexane-ethanol (80 + 1 + 1, v/v) and n-butanol-ethanol-chloroform-25% ammonia (4 + 5 + 2 + 5, v/v). Along with Rf values and spot colors, direct UV and visual densitometric measurements were used for identification. Similar measuring ranges were used for quantitative analysis to obtain repeatable and reliable results for the preparations examined. The results of the quantitative analysis are characterized by a small confidence interval and are close to the declared contents of active constituents: oxytetracycline 30.01 +/- 0.38 g at lambda = 350 nm and 30.24 +/- 0.86 g at lambda = 430 nm; tiamulin, 10.19 +/- 0.86 g at lambda = 450 nm; lincomycin, 2.27 +/- 0.08 g at lambda = 278 nm; and spectinomycin, 2.18 +/- 0.07 g at lambda = 421 nm. The recoveries for all antibiotics ranged from 100.01 to 102.54%.  相似文献   

3.
A densitometric method was developed for the identification and determination of indomethacin and its degradation products, 4-chlorobenzoic acid and 5-methoxy-2-methyl-3-indoleacetic acid, in pharmaceuticals. To separate these compounds, silica gel-coated thin-layer chromatography plates and the following mobile phase were used: 2-propanol-25% ammonia-water (8 + 1 + 1, v/v). UV densitometric measurements were made by comparing the absorption spectra and Rf values of appropriate standards with the pharmaceutical preparations examined. The conditions for separation were established and a low detection limit was obtained. Average recoveries were 100.69, 90.09, and 91.17% for indomethacin, 4-chlorobeznzoic acid, and 5-methoxy-2-methyl-3-indoleacetic acid, respectively.  相似文献   

4.
A new thin-layer chromatographic-densitometric method has been developed for rapid identification and quantitative determination of polymyxin B, framycetin, and dexamethasone in a dental ointment. Silica gel 60 and F254 silica gel 60 plates were used for separating antibiotics and dexamethasone acetate, respectively. When determining framycetin and polymyxin B, chromatograms were developed by using 2 mobile phases, namely methanol and methanol-n-butanol-ammonia (25%)-chloroform (14 + 4 + 9 + 12, v/v/v/v/). The densitometric measurements were made at 550 nm after detection with 0.3% ninhydrin solution. Dexamethasone was determined by using the mobile phase cyclohexane-ethyl acetate (2 + 3, v/v) and ultraviolet densitometric recording at 245 nm. The results obtained for individual constituents with the chromatographic-densitometric method demonstrate similar accuracy, relative standard deviation values from 1.49 to 2.47%, and relative error values from 0.02 to 0.81% and are comparable to those obtained with the reference methods.  相似文献   

5.
A thin-layer chromatographic (TLC)-densitometric method has been developed for identification and quantification of ciprofloxacin (Rf = 0.61) and an ethylenediamine compound (Rf = 0.42), a desfluoro compound (Rf = 0.48), by-compound A (Rf = 0.53), and fluoroquinolonic acid (Rf = 0.68) as ciprofloxacin degradation products in pharmaceutical preparations. By using chloroform-methanol-25% ammonia (43 + 43 + 14, v/v/v) as the mobile phase and silica gel 60 F254 high-performance TLC plates as the stationary phase, it was possible to separate individual constituents that, when subjected to ultraviolet (UV) densitometric analysis at 330 nm for fluoroquinolonic acid and 277 nm for the other compounds, gave well developed peaks allowing easy qualitative and quantitative analyses. DMSO-methanol (1 + 1) was used to extract drug constituents. The method showed high sensitivity (limit of detection 10 to 44 ng), a wide linearity range (3 to 20 microg/mL), and good precision (2.32 to 6.46% relative standard deviation) and accuracy (percentage recoveries 98.62 to 101.52%) for individual constituents.  相似文献   

6.
Four new selective, precise, and accurate methods are described for the determination of nizatidine (NIZ) in the presence of its sulfoxide derivative in both the raw material and pharmaceutical preparations. Method A is based on zero-order (0D), first-derivative (1D), and second-derivative (2D) spectrophotometric measurement of NIZ in aqueous solution at the zero-crossing point of its sulfoxide derivative (at 314, 295-334, and 318-348 nm, respectively). Method B is a 1DD spectrophotometric method based on the simultaneous use of the first derivative of the ratio spectra and the measurement of peak amplitude at 297 nm. Method C uses a solvent-induced derivative-difference spectrophotometry with deltaD1 measurement from peak to peak at 315-345 nm. Method D involves quantitative densitometric evaluation of a mixture of the drug and its sulfoxide derivative after separation by high-performance thin-layer chromatography on silica gel plates with chloroform-methanol (9 + 1, v/v) as the mobile phase; Rf values for NIZ and its sulfoxide derivative were 0.4 and 0.2, respectively. The spot was scanned at 254 nm. The first-derivative spectrophotometric method was used to investigate the kinetics of the hydrogen peroxide degradation process at different temperatures. The apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. The results obtained by the proposed methods were analyzed statistically and compared with those obtained by the official method. These methods are suitable as stability-indicating for the determination of NIZ in the presence of its oxidation-induced degradation product (sulfoxide derivative) either in the bulk powder or in pharmaceutical preparations.  相似文献   

7.
Summary This paper describes a TLC-densitometric procedure for identification and determination of bisoprolol, labetalol, and propafenone in pharmaceutical preparations. The compounds were derivatized with dabsyl chloride and chromatographed on silica gel by ascending development. The separation of the dabsylated drugs was followed by densitometric quantitation. The method was satisfactorily applied to pharmaceutical preparations. TheRSD of quantitation was between 1.6 and 2.3%.  相似文献   

8.
This paper describes a rapid reversed-phase liquid chromatographic method, with UV detection, for the simultaneous determination of acetylsalicylic acid, caffeine, codeine, paracetamol, pyridoxine, and thiamine in pharmaceutical preparations. A reversed-phase C18 Nucleosil column is used. The mobile phase consists of 2 successive eluants: water (5 min) and acetonitrile-water (75 + 25, v/v; 9 min), both adjusted to pH 2.1 with phosphoric acid. Before determination acetylsalicylic acid is completely converted to salicylic acid by alkaline hydrolysis. Salicylic acid, caffeine, paracetamol, pyridoxine, and thiamine are all detected at 285 nm, whereas codeine is detected at 240 nm. Calibration curves were linear for salicylic acid, caffeine, paracetamol, and pyridoxine in the range of 50-500 mg/L, and for codeine and thiamine in the range of 50-1000 mg/L. The method was applied to the analysis of 13 fortified commercial pharmaceutical preparations. Recoveries ranged from 92.6 to 105.5%, with relative standard deviations of 1.1-5.8%.  相似文献   

9.
An inexpensive, rapid and reproducible capillary electrophoretic method has been developed and validated for the determination of metformin in pharmaceutical preparations. The method was developed utilizing a fused silica capillary (60 cm x 50 microm I.D.), phosphate buffer (50 mM, 3.0 pH)-acetonitrile (95:5, v/v) as background electrolyte (BGE), 20 kV applied voltage with UV detection at 254 nm and at a working temperature of 23 +/- 1 degrees C. Linearity was observed in the concentration range from 100 ng/L to 5 microg/L, with a correlation coefficient (R2) of 0.9998. The limits of detection and quantification achieved were 60 and 100 ng/mL, respectively. The recovery of metformin from pharmaceutical preparations was 99.1%. These validation parameters demonstrate the precision of the method and its suitability for the determination of metformin in pharmaceutical tablet formulations.  相似文献   

10.
A new headspace gas chromatographic method with flame ionization detection (HSS-GC-FID) was developed and validated for the determination of methanol as the main volatile impurity present in ethanolic pharmaceutical preparations. The use of static headspace sampling minimized the interference of other volatile matrix components and provided satisfactory results in purity assessment of different complex samples. The developed procedure revealed to be rapid, sensitive, reproducible and accurate. The detection and quantification limits of methanol were 0.0003 and 0.0011% (v/v), respectively, and were sufficiently low to enable the estimation of organic volatile impurity according to the ICH guideline as well as the examination of methanol limit specified in European Pharmacopoeia for liquid pharmaceutical preparations. The proposed method was successfully applied to the analysis of diverse alcoholic herbal extracts and tinctures as well as ethanolic dermatological lotions.  相似文献   

11.
Two chromatographic methods were developed for the determination of some anti-fungal drugs in the presence of either their degradation products or cortisone derivatives. The densitometric method determined mixtures of each of ketoconazole (KT), clotrimazole (CL), miconazole nitrate (MN) and econazole nitrate (EN) with the degradation products of each one. Mixtures of MN with hydrocortisone (HC) and of EN with triamcinolone acetonide (TA) were also successfully separated and determined by this technique. For KT and CL, a mixture of methanol:water:triethylamine (70:28:2 v/v) was used as a developing system and the spots were scanned at 243 nm and 220 nm for KT and CL, respectively. For MN and EN, a mixture of hexane:isopropyl alcohol:triethylamine (80:17:3 v/v) was used as a developing system and the spots were scanned at 225 nm for both drugs. The HPLC method determined mixtures of CL or EN with their degradation products which were separated and quantified on a Zorbax C8 column. Elution was carried out using methanol:phosphate buffer pH 2.5 (65:35 v/v) as a mobile phase at a flow rate of 1.5 ml/min and UV detection at 220 nm for CL. For EN, a mixture of methanol:water containing 0.06 ml triethylamine pH 10 (75:25 v/v) was used as a mobile phase at a flow rate of 1.5 ml/min and UV detection at 225 nm. The methods were also used to separate mixtures of CL with betamethasone dipropionate (BD) and EN with TA in a laboratory prepared mixture and in pharmaceutical preparations. The methods were sensitive, precise and applicable for determination of the drugs in pharmaceutical dosage forms.  相似文献   

12.
Four new methods were developed and validated for the determination of cinnarizine HCl in its binary mixture with piracetam in pure and pharmaceutical preparations. The first one was a densitometric analysis that provides a simple and rapid method for the separation and quantification of cinnarizine HCI. The method depends on the quantitative densitometric evaluation of thin-layer chromatograms of cinnarizine HCI at 252 nm over concentration range of 1-6 microg/spot, with a mean accuracy of 100.05 +/- 0.91%. The second method was determination of the drug using a colorimetric method that utilizes the reaction of 3-methyl-benzothiazolin-2-one in the presence of FeCl3 as an oxidant. The green color of the resulting product was measured at 630 nm over concentration range 10-40 microg/mL, with a mean accuracy of 100.10 +/- 1.13%. The third method was a direct spectrophotometric determination of cinnarizine HCI at 252 nm over the concentration range 7-20 microg/mL, while piracetam was determined by derivative ratio spectrophotometry at 221.6 nm over concentration range 5-30 microg/mL, with a mean accuracy of 100.14 +/- 0.79 and 100.26 +/- 1.24% for cinnarizine HCI and piracetam, respectively. The last method was a liquid chromatography analysis of both cinnarizine HCI and piracetam, depending on quantitative evaluation of chromatograms of cinnarizine HCI and piracetam at 252 and 212 nm, respectively, over the concentration range 10-200 microg/mL for cinnarizine HCI and 20-500 microg/mL for piracetam, with a mean accuracy of 100.03 +/- 0.89 and 100.40 +/- 0.94% for cinnarizine HCI and piracetam, respectively. The proposed procedures were checked using laboratory-prepared mixtures and successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed procedures was further assessed by applying the standard addition technique. Recoveries were quantitative, and the results obtained agreed with those obtained by other reported methods.  相似文献   

13.
A simple, rapid, and accurate high-performance thin-layer chromatography (HPTLC) method is described for the simultaneous determination of levofloxacin hemihydrate and ornidazole in tablet dosage form. The method is based on the HPTLC separation of the two drugs followed by densitometric measurements of their spots at 298 nm. The separation is carried out on Merck TLC aluminium sheets of silica gel 60 F254 using n-butanol-methanol-ammonia (5:1:1.5, v/v/v) as mobile phase. The linearity is found to be in the range of 50-250 and 100-500 ng/spot for levofloxacin hemihydrate and ornidazole, respectively. The method is successively applied to pharmaceutical formulation because no chromatographic interferences from the tablet excipients are found. The suitability of this HPTLC method for the quantitative determination of the compounds is proved by validation in accordance with the requirements laid down by International Conference on Harmonization (ICH) guidelines.  相似文献   

14.
Accurate, selective, sensitive and precise HPTLC‐densitometric and RP‐HPLC methods were developed and validated for determination of bumadizone calcium semi‐hydrate in the presence of its alkaline‐induced degradation product and in pharmaceutical formulation. Method A uses HPTLC‐densitometry, depending on separation and quantitation of bumadizone and its alkaline‐induced degradation product on TLC silica gel 60 F254 plates, using hexane–ethyl acetate–glacial acetic acid (8:2:0.2, v/v/v) as a mobile phase followed by densitometric measurement of the bands at 240 nm. Method B comprises RP‐HPLC separation of bumadizone and its alkaline‐induced degradation product using a mobile phase consisting of methanol–water–acetonitrile (20:30:50, v/v/v) on a Phenomenex C18 column at a flow‐rate of 2 mL/min and UV detection at 235 nm. The proposed methods were successfully applied to the analysis of bumadizone either in bulk powder or in pharmaceutical formulation without interference from other dosage form additives, and the results were statistically compared with the established method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Three stability-indicating assay methods were developed for the determination of tropisetron in a pharmaceutical dosage form in the presence of its degradation products. The proposed techniques are HPLC, TLC, and first-derivative spectrophotometry (1D). Acid degradation was carried out, and the degradation products were separated by TLC and identified by IR, NMR, and MS techniques. The HPLC method was based on determination of tropisetron in the presence of its acid-induced degradation product on an RP Nucleosil C18 column using methanol-water-acetonitrile-trimethylamine (65 + 20 + 15 + 0.2, v/v/v/v) mobile phase and UV detection at 285 nm. The TLC method was based on the separation of tropisetron and its acid-induced degradation products, followed by densitometric measurement of the intact spot at 285 nm. The separation was carried out on silica gel 60 F254 aluminum sheets using methanol-glacial acetic acid (22 + 3, v/v) mobile phase. The 1D method was based on the measurement of first-derivative amplitudes of tropisetron in H2O at the zero-crossing point of its acid-induced degradation product at 271.9 nm. Linearity, accuracy, and precision were found to be acceptable over concentration ranges of 40-240 microg/mL, 1-10 microg/spot, and 6-36 micro/mL for the HPLC, TLC, and 1D methods, respectively. The suggested methods were successfully applied for the determination of the drug in bulk powder, laboratory-prepared mixtures, and a commercial sample.  相似文献   

16.
Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.  相似文献   

17.
A new, simple, rapid, and precise RP-HPLC method has been developed and validated for the determination of five cephalosporins, namely, cefalexin, cefoperazone, ceftriaxone, ceftazidime, and cefepime. The method has been applied successfully for simultaneous determination of cefalexin in a binary mixture with sodium benzoate in a suspension, and cefoperazone in a binary mixture with sulbactam in vials. Chromatographic separation was achieved on a Waters microBondapak C18 column (250 x 4.6 mm id, 10 pm particle size) using the mobile phase monobasic potassium phosphate (50 mM, pH 4.6)-acetonitrile (80 + 20, v/v) with UV detection. A flow rate of 1 mL/min was applied. Linearity, accuracy, and precision were found to be acceptable over the concentration range of 30-300, 3-30, and 15-120 microg/mL for the studied cephalosporins, sodium benzoate, and sulbactam, respectively. The optimized method proved to be specific, robust, and accurate for QC of the cited drugs in their pharmaceutical preparations.  相似文献   

18.
ABSTRACT: A TLC densitometric method was developed for simultaneous determination of four anabolic androgenic steroids (AAS) of testosterone derivatives including testosterone propionate (TP), testosterone phenyl propionate (TPP), testosterone isocaproate (TI) and testosterone deaconate (TD) in their pharmaceutical products. Separation was carried out on Al based TLC plates, pre-coated with silica gel 60F-254 using hexane and ethyl acetate (8.5:1.5, v/v). Spots at Rf 0.31+/-0.01, 0.34+/-0.01, 0.40+/-0.01 and 0.45+/-0.02 were recognized as TPP, TP, TI and TD, respectively. Quantitative analysis was done by densitometric measurements at lambdamax 251 nm for all derivatives. The developed method was validated as per ICH guidelines. Method was found linear over the concentration range of 200-1200 ng/spot with the correlation coefficient of 0.995, 0.993, 0.995 and 0.996 for TP, TPP, TI, TD, respectively. Limit of detection for all derivatives were in the range of 16.7-22.3 ng/spot while limit of quantitation were found to be in the range of 55.7-70.9 ng/spot. The developed TLC method can be applied for the simultaneous routine analysis of testosterone derivatives in their individual and combined pharmaceutical formulations.  相似文献   

19.
An HPTLC method for analysis of Exemestane in bulk and pharmaceutical formulation has been established and validated. The analyte was separated on aluminium plates precoated with silica gel 60 F254. The mobile phase was chloroform:methanol 9.2:0.8 (v/v). Quantification was done by densitometric scanning at 247 nm. Response was a linear function of Exemestane concentration in the range of 100–500 μg mL−1. The limit of detection and quantification for Exemestane were 5.8 and 17.58 μg mL−1, respectively. Average recovery of Exemestane was 100.1, which shows that the method was free from interference from excipients present in the formulation. The established method enabled accurate, precise, and rapid analysis of Exemestane in bulk as well as pharmaceutical formulation.  相似文献   

20.
A simple, rapid, and precise HPTLC method was developed for quantitative estimation of gallic acid in stem bark of Myrica esculenta, family Myricaceae. Separation was performed on silica gel 60F254 HPTLC plates using toluene-ethyl acetate-formic acid-methanol (3 + 3 + 0.6 + 0.4, v/v/v/v) mobile phase for separation of the extracted components. The determination was carried out in the UV densitometric absorbance-reflection mode at 280 nm. The amount of gallic acid in free and combined form in the stem bark powder was found to be 0.276 and 0.541%, respectively, on a dry weight basis. The method was validated in terms of linearity, accuracy, precision, and specificity according to International Conference on Harmonization guidelines. Gallic acid response was found to be linear over a broad concentration range of 0.4-2.0 microg/band. LOD and LOQ were 0.103 and 0.312 microg/spot, respectively. The developed method is capable of quantifying amounts of gallic acid in stem bark powder of M. esculenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号