首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel polymers based on 9-alkylcarbazol-3,6-diyl and different aromatic amino groups were synthesized in good yields through modified Ullmann coupling reactions. The resulting polymers were characterized by gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis. These polymers possess high thermal stability with onset decomposition temperatures of 320-355 °C. Their glass transition temperatures range from 154 °C to 250 °C. The ionisation potentials of the synthesized polymers established by electron photoemission in air technique are in the range 4.95-5.12 eV.  相似文献   

2.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

3.
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized N,N′-(4,4′-diphthaloyl)-bis-l-isoleucine diacid (3) via polycondensation with various diamines. The diacid was synthesized by the condensation reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (1) with l-isoleucine (2) in a mixture of acetic acid and pyridine (3:2 v/v). All the polymers were obtained in quantitative yields with inherent viscosities of 0.20-0.43 dL g−1. All the polymers were highly organosoluble in solvents like N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran, γ-butyrolactone, cyclohexanone and chloroform at room temperature or upon heating. These poly(amide-imide)s had glass transition temperatures between 198 and 231 °C, and their 10% weight-loss temperatures were ranging from 368 to 398 °C and 353 to 375 °C under nitrogen and air, respectively. The polyimide films had tensile strengths in the range of 63-88 MPa and tensile moduli in the range of 0.8-1.4 GPa. These poly(amide-imide)s possessed chiral properties and the specific rotations were in the range of −3.10° to −72.92°.  相似文献   

4.
A new class of optically active poly(amide-imide)s based on an α-amino acid was synthesized via direct polycondensation reaction of different diisocyanates with a chiral diacid monomer. The step-growth polymerization reactions of N-trimellitylimido-S-valine (TISV) (1) with 4,4′-methylene-bis(4-phenylisocyanate) (MDI) (2) was performed under microwave irradiation, as well as solution polymerization under graduate heating and reflux conditions. The optimized polymerization conditions for each method were performed with tolylene-2,4-diisocyanate (TDI) (3), hexamethylene diisocyanate (HDI) (4), and isophorone diisocyanate (IPDI) (5) to produce optically active poly(amide-imide)s via diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.02-1.10 dL/g. Decomposition temperatures for 5% weight loss (T5) occurred above 300 °C (by TGA) in nitrogen atmospheres. These polymers are optically active, thermally stable and soluble in amide-type solvents. Some structural characterization and physical properties of this new optically active poly(amide-imide)s are reported.  相似文献   

5.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

6.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

7.
A series of novel triphenylamine-containing aromatic poly(amine-amide-imide)s (PAAIs) were prepared by the phosphorylation polyamidation reactions from the diamine, N,N′-bis(4-aminophenyl)-N,N′-diphenyl-1,4-phenylenediamine, and various imide ring-preformed dicarboxylic acids. All the PAAIs were amorphous, had good solubility in many polar aprotic solvents, and exhibited excellent thin film forming capability with good mechanical properties. They displayed relatively high glass-transition temperatures (220-306 °C) and good thermal stability, with 10% weight-loss temperatures in excess of 522 °C in air or nitrogen and char yields at 800 °C in nitrogen higher than 66%. The solutions of polymers in NMP exhibited strong UV-vis absorption bands with a maximum around 315 nm. The hole-transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the PAAIs prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited two reversible oxidation redox couples at 0.63 and 1.01 V vs. Ag/AgCl in acetonitrile solution. All the PAAIs revealed very stable electrochromic characteristics, changing color from original pale brownish to green, and then to blue at 0.67 and 1.08 V, respectively.  相似文献   

8.
A new polarimetric instrument and measurement method is described based on the use of diode lasers as radiation source (532, 650 and 1064 nm) and birefringent prisms, such as Glan-Laser and Wollaston, as analyzers. The laser radiation is passed through a dichroic polarizer film for further orientation of its polarization plane at 45° in relation to the polarization plane of the analyzer. The polarized beam, oriented in that way, passes the sample cell, impinges the prism surface, and the intensities of the two emerged beams are detected by two twin silicon detectors. Ideally, in the absence of any optically active substances, the crystals produces two orthogonally polarized refracted beams of equal intensity. In the presence of an optically active substance, the arctangent of the square root of the beam intensities ratio is equal to the new polarization angle (β) of the laser beam. The rotation angle imposed for any optically active substance present in the sample cell is then given by: α = (45 – β)°. Because the rotation is obtained by the ratio of the intensities of two beams, it is independent of the laser intensity, which can vary up to ±15% with no significant effect on the accuracy of the polarimetric measurement. The instrument has been evaluated for measurement of optically active substances such as sucrose and fructose. The instrument employs low cost components, is capable of attaining a repeatability of ±0.003° and can measure the rotation angle, over a ±45° range, in less than 2 s. Because it does not present any moving parts it can be easily adapted for in/on-line process monitoring of optically active substances.  相似文献   

9.
1,4-Addition of arylboronic acid to trans-β-arylenals proceeded smoothly in acetone-water (10/1) at 10-25 °C in the presence of [Pd(S,S-chiraphos)(PhCN)2](SbF6)2 (0.5 mol %), AgX (X = BF4, SbF6, 10 mol %) and aqueous 42% HBF4 to afford optically active 3,3-diarylalkanals with high enantioselectivities in a range of 86-97% ee. The protocol provided a method for short-step synthesis of optically active (+)-(R)-CDP 840.  相似文献   

10.
A diimide-diacid with oligoether spacer was synthesized from the condensation reaction of trimellitic anhydride with 1,8-diamino-3,6-dioxaoctane. Soluble poly(amide imide)s containing flexible groups were prepared through polycondensation reactions of diimide-diacid with different diamines via direct Yamazaki method. The poly(amide imide)s showed improved solubilty in polar aprotic solvents due to the presence of ether and alkyl flexible groups. According to the differential scanning calorimetry analysis, the glass transition temperatures of the polymers were in the range of 119-157 °C. According to thermogravimetric analysis, the temperatures for 10% weight losses were in the range of 348-387 °C that showed good thermal stabilities for these polymers.  相似文献   

11.
Thermal chemiluminescence (TCL) from the fibrous proteins wool and feather keratin, silk fibroin and Type I collagen is reported for the first time. The proteins all emit TCL when heated in the atmosphere of O2 or N2 in the range 40-220 °C. Plotting non-isothermal CL data in O2 in Arrhenius format showed an increase in the activation energy at temperatures in the range 129-161 °C for each protein. This may indicate that a different free radical oxidation process operates when the mobility of the amorphous phase of the protein is increased above its Tg. Wool, silk and collagen exhibited a luminescence peak at 130 °C (with feather keratin at 145 °C) during non-isothermal CL experiments in N2, similar to that observed in many synthetic polymers and characteristic of polymer hydroperoxides.  相似文献   

12.
Three novel series of soluble and curable phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety were synthesized from an excess amount of three dianhydrides and phthalazinone-based diamine, followed by reacting with 4-(3-aminophenoxy)phthalonitrile (APPh) in a two-step, one-pot reaction, respectively. The phthalonitrile oligomers containing phthalazinone moiety were cured in the presence of 4,4′-diaminodiphenylsulfone (DDS). The oligomers and the crosslinked polymers were characterized by DSC, FT-IR and elemental analysis. These phthalonitrile oligomers containing phthalazinone groups were found to be soluble in some aprotic solvents, such as chloroform, pyridine, m-cresol and N-methyl-2-pyrrolidone (NMP). The crosslinked polymers were insoluble in all solvents. The thermal properties of the oligomers and the crosslinked polymers were evaluated using DSC and TGA analysis. The phthalonitrile oligomers showed high glass transition temperatures (Tgs) in the range of 214-256 °C and high decomposition temperatures with 10% weight loss (Td10%) ranging from 523 to 553 °C. The crosslinked polymers showed excellent thermal stability with the 10% weight loss temperatures ranging from 543 to 595 °C, but did not exhibit a glass transition temperature upon heating to 350 °C.  相似文献   

13.
The synthesis and characterization of a new series of side-chain liquid crystal polyepichlorohydrin (PECH) polymers are described. The structures and thermal properties of the synthesized polymers were investigated using IR, NMR, polarized optical microscopy and differential scanning calorimetry. A substantial increase of the glass transition temperature with the degree of substitution of side-chain groups was observed. Polymers with a degree of substitution of side groups, of at least 60%, exhibited thermotropic liquid crystalline behaviour. The polymers present thermal liquid crystalline behaviour and form Schlieren and thread texture upon cooling from the isotropic phase, after annealing for 120 min at different temperatures. In addition, the thermal decomposition of PECHOPhPhCN was studied by thermogravimetry under both nitrogen and air environments. The temperature of the maximum decomposition rate was about 340 °C. Weight loss decreased considerably after 350 °C and was approximately 98% at 700 °C. Chemical modification of functional polymers offers a simple method for obtaining liquid crystalline polymers whose transition temperature can be tailored by varying the amount of substitution, however complete substitution cannot be achieved.  相似文献   

14.
A selective hydrogenation of different aryl ketones can be obtained by using a heterogeneous copper catalyst under very mild experimental conditions, namely 90 °C and 1 atm of hydrogen, without using any kind of additive or poisoning agent.  相似文献   

15.
An efficient, fast and easy method for synthesis of new optically active and thermally stable aromatic polyamides (PAs) containing pendent phthalimide group and l-alanine flexible side spacer using room temperature ionic liquid (RTIL) by microwave irradiation has been investigated. The results found that RTIL efficiently absorb microwave energy, thus leading to a very high heating rate. All the PAs showed excellent solubility and readily dissolved in various organic solvents. Thermogravimetric analysis (TGA) exhibited that polymers were stable, with 10% weight loss recorded above 373 and 418 °C in the nitrogen atmosphere. In order to see the efficiency of microwave irradiation, this method was compared with polycondensation of the same monomers in RTILs using conventional heating.  相似文献   

16.
An imidazolium-based ionic liquid with cyclophane-type planar chirality was synthesized in an optically pure form for the first time. The resultant ionic liquid existed as a liquid at room temperature (Tg = −35 °C), and was found to be applicable as an NMR chiral shift reagent for racemic anions. Excellent robustness of the ionic liquid to a highly elevated temperature (270 °C) was proved from the viewpoints of isomerization and thermal decomposition.  相似文献   

17.
A novel diimide-diacid (DIDA) monomer, 4-{4-[(4-methyl phenyl) sulphonyl]}-1,3-bis-trimellitoimido benzene containing sulphone and bulky pendant groups was successfully synthesized and used to synthesize a series of wholly aromatic poly(amide-imide)s (PAIs) by direct polycondensation method. The direct polycondensation of newly synthesized DIDA with different diamines was carried out via Yamazaki’s phosphorylation method using triphenyl phosphite and pyridine system. The resulting poly(amide-imide)s were obtained in quantitative yields with inherent viscosities 0.36-0.47 dl/g in DMAc at 30 ± 0.1 °C. The poly(amide-imide)s were amorphous and were readily soluble in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), and pyridine. Tough and flexible films were obtained by casting their DMAc solution. According to thermogravimetric analysis, the polymers were fairly stable up to temperature around 396 °C, and 10% weight losses in the temperature range of 476-511 °C that showed good thermal stabilities of these polymers.  相似文献   

18.
Two series of aromatic poly(1,3,4-oxadiazole-amide)s have been synthesized by low-temperature solution polycondensation reaction of equimolar amounts of aromatic diamines containing preformed oxadiazole rings with diacid chlorides having silicon or hexafluoroisopropylidene groups. These polymers are soluble in polar aprotic solvents and show high thermal stability with decomposition temperature being above 400 °C and glass transition temperature in the range of 250-350 °C. The polyoxadiazole-amides have weight- and number-average molecular weights in the range of 207 000-330 000 and 77 000-131 000, respectively. Conformational parameters of these polymers were calculated by Monte Carlo method with allowance for hindered rotation and discussed in relation with thermal properties. Polymer solutions in NMP were processed into thin free-standing films that showed good mechanical properties with tensile strength in the range of 50-100 MPa, tensile modulus in the range of 2.25-3.56 GPa and elongation to break in the range of 1.65-8.58%.  相似文献   

19.
A s-triazine containing hyperbranched polyamine (HBPA) has been synthesized from cyanuric chloride and aromatic diamine, 4,4′-(1,4-phenylenediisopropylidene) bis-aniline by nucleophilic displacement polymerization technique using an A2 + B3 approach with high yield (>80%). The synthesized polymer has been characterized by 1H NMR, 13C NMR, FT-IR spectroscopic studies, elemental analysis, solubility and measurement of solution viscosity. The thermogravimetric (TG) analysis and differential scanning calorimetric (DSC) studies indicate that the polymer is thermostable upto 290 °C without any decomposition and has glass transition temperature of 243 °C. The flame retardancy of the pure powder polymer and the blends with linear commercial polymers such as plasticized PVC and LDPE with this hyperbranched polymer were investigated by the measurement of limiting oxygen index (LOI) value. The results show that the polymer has self-extinguishing characteristic (LOI = 38) and acts as an effective flame retardant additive for the above linear base polymers. The synergistic effect of this hyperbranched flame retardant was observed with triphenyl phosphine oxide in the same base polymers. The flammability efficiency of the hyperbranched polyamine is also evaluated by help of thermogravimetric (TG) analysis. The heat aging and leaching in different chemical media did not influence the flame retardancy of the blends.  相似文献   

20.
The 4-chloromethyl styrene (CMS) was copolymerized with different styrenic monomers such as methyl styrene, 4-methoxy styrene and α-methyl styrene by free radical polymerization method at 70 ± 1 °C using α,α-azobis(isobutyronitrile) (AIBN) as an initiator and the copolymers I, II and III collected respectively. The very bulky tris(trimethylsilyl)methyl {trisyl} substituents were covalently attached to the obtained copolymers with replacement of all the chlorine atoms in CMS units. The polymers, obtained in quantitative yields, were characterized by FT-IR, 1H NMR and 13C NMR spectroscopy; differential scanning calorimetry (DSC) and GPC studies. All the polymers containing trisyl groups showed a high glass transition temperature (in the range 150-190 °C) in comparison with copolymers I-III (in the range 90-95 °C). The increase of the glass transition temperature reflects the substantial increase in rigidity of new polymers bearing very bulky substituents in side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号