首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A series of novel triphenylamine-containing aromatic poly(amine-amide)s were prepared from the dicarboxylic acid, N,N′-bis(4-carboxyphenyl)-N,N′-diphenyl-1,4-phenylenediamine, and various diamines by direct phosphorylation polycondensation. All the poly(amine-amide)s were amorphous, soluble in a variety of organic solvents, and could be solution cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with relatively high glass-transition temperatures (195-280 °C). These polymers exhibited strong UV-Vis absorption bands at 330-346 nm and their photoluminescence showed maximum bands around 516-535 nm in NMP solution. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-amide)s prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited two reversible oxidative redox couples at potential 0.73-0.78 V and 1.12-1.18 V, respectively vs Ag/AgCl in acetonitrile solution. All the poly(amine-amide)s exhibited excellent reversibility of electrochromic characteristics by continuous ten cyclic scans between 0.0 and 1.40 V, with a color change from original pale yellowish neutral form to the green and then to blue oxidized forms.  相似文献   

2.
A new triphenylamine-containing aromatic diamine monomer, 4-[4-(1-adamantyl)phenoxy]-4′,4″-diaminotriphenylamine, was synthesized from cesium fluoride-mediated N,N-diarylation of 4-(1-adamantyl)-4′-aminodiphenyl ether with 4-fluoronitrobenzene and subsequent reduction of the resultant dinitro compound. Novel electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine moieties were prepared from the newly synthesized diamine monomer with aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the resulting polymers were amorphous and most of them were readily soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) and could be solution-cast into transparent and strong films with good mechanical properties. These polymers exhibited glass-transition temperatures between 254 and 310 °C, and they were fairly stable up to a temperature above 450 °C for the polyamides and above 500 °C for the polyimides. These polymers exhibited strong UV-vis absorption maxima at 293-346 nm in solution, and the photoluminescence spectra of polyamides showed maximum bands around 408-452 nm in the blue region. Cyclic voltammograms of the polyamide and polyimide films on an indium-tin oxide (ITO)-coated glass substrate exhibited one pair of reversible redox couples at half-wave oxidation potentials (E1/2) around 0.83-0.86 V and 1.12-1.13 V, respectively, versus Ag/AgCl in an acetonitrile solution. All the polymer films revealed good electrochemical and electrochromic stability by repeatedly switching electrode voltages between 0.0 V and 1.1-1.4 V, with coloration change from the pale yellowish neutral state to the green or blue oxidized state.  相似文献   

3.
A series of new poly(amine-hydrazide)s I were prepared from the dicarboxylic acid 4,4′-dicarboxy-4″-methyltriphenylamine with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. Polymers I were readily soluble in many common organic solvents, and could be solution cast into transparent, tough, and flexible films with good mechanical properties. Differential scanning calorimetry (DSC) indicated that the hydrazide polymers had Tg’s in the range of 222-223 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300-400 °C. The resulting poly(amine-1,3,4-oxadiazole)s II exhibited Tg’s in the range of 269-283 °C, 10% weight-loss temperatures in excess of 511 °C, and char yield at 800 °C in nitrogen higher than 63%. These poly(amine-hydrazide)s I exhibited strong UV-Vis absorption bands at 351-355 nm in NMP solution. Their photoluminescence spectra in NMP solution and film showed maximum bands around 459-461 nm in the blue region for I series. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-hydrazide)s I prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couples at 1.32-1.33 V vs. Ag/AgCl in acetonitrile solution. All obtained poly(amine-hydrazide)s I revealed excellent stability of electrochromic characteristics, changing color from original pale yellowish to blue.  相似文献   

4.
A dicarboxylic acid bearing two preformed imide rings, namely 4,4′-bis(trimellitimido)-4″-methoxytriphenylamine (3), was prepared by the condensation of 4,4′-diamino-4″-methoxytriphenylamine (2) and two molar equivalents of trimellitic anhydride (TMA). A new family of aromatic poly(amide-imide)s (PAIs) containing the electroactive triphenylamine (TPA) unit were prepared by the triphenyl phosphite activated polycondensation of the diimide-diacid 3 with various aromatic diamines. All the polymers were readily soluble in many organic solvents and could be solution-cast into tough and flexible polymer films. They displayed high glass-transition temperatures (269-313 °C) and good thermal stability, with 10% weight-loss temperatures in excess of 521 °C in nitrogen and char yields at 800 °C in nitrogen higher than 68%. Cyclic voltammograms of the PAI films cast onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couple at 0.91-0.93 V vs. Ag/AgCl in acetonitrile solution. The polymer films revealed a good electrochemical and electrochromic stability, with a color change from colorless neutral form to blue oxidized form at applied potentials ranging from 0.0 to 1.2 V. The PAIs containing the TPA unit in both imide and amide segments showed multicolor electrochromism: pale yellow in the neutral state, green in the semi-oxidized state, and deep blue in the fully oxidized state.  相似文献   

5.
A CF3-containing diamine, 2,2′-thiobis-[4-methyl(2-trifluoromethyl)4-aminophenoxy) phenyl ether] (DA), was successfully synthesized from 2-2′-sulfide-bis-(4-methyl phenol) and 2-chloro-5-nitrobenzotrifluoride. The sulfur containing diimide-diacid (DIDA) was prepared by condensation reaction of diamine DA and trimellitic anhydride. A series of novel organic-soluble polyamide-imides (PAIs) bearing flexible ether and sulfide links, electron-withdrawing trifluoromethyl groups and ortho-phenylene units were synthesized from DIDA, by direct polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone using triphenyl phosphite and pyridine as a condensing agent in the presence of dehydrating agent (LiCl). The polyamide-imides were obtained in high yields and possessed inherent viscosities in the range of 0.42-0.95 dL g−1. All of the polymers were amorphous in nature, showed outstanding solubility and could be easily dissolved in amide-type polar aprotic solvents (e.g., N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide) and even dissolved in less polar solvents (e.g., pyridine and tetrahydrofuran). They showed good thermal stability with glass transition temperatures between 195-245 °C, 10% weight loss temperatures in excess of 485 °C, and char yields more than 50% at 700 °C in nitrogen atmosphere. Moreover, these PAIs possessed low refractive indexes (n = 1.57-1.59) and low birefringence (Δ ≈ 0.02) due to the trifluoromethyl pendent groups and thioether bridged ortho-catenated aromatic rings that interrupt chain packing and increase free volume.  相似文献   

6.
Novel optically active aromatic poly(amide-imide)s (PAIs) were prepared from newly synthesized N,N′-(4,4′-diphthaloyl)-bis-l-isoleucine diacid (3) via polycondensation with various diamines. The diacid was synthesized by the condensation reaction of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (1) with l-isoleucine (2) in a mixture of acetic acid and pyridine (3:2 v/v). All the polymers were obtained in quantitative yields with inherent viscosities of 0.20-0.43 dL g−1. All the polymers were highly organosoluble in solvents like N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran, γ-butyrolactone, cyclohexanone and chloroform at room temperature or upon heating. These poly(amide-imide)s had glass transition temperatures between 198 and 231 °C, and their 10% weight-loss temperatures were ranging from 368 to 398 °C and 353 to 375 °C under nitrogen and air, respectively. The polyimide films had tensile strengths in the range of 63-88 MPa and tensile moduli in the range of 0.8-1.4 GPa. These poly(amide-imide)s possessed chiral properties and the specific rotations were in the range of −3.10° to −72.92°.  相似文献   

7.
A new naphthalene-ring containing diamine, bis-[4-(5-amino-naphthalene-1-yloxy)-phenyl]-methanone was prepared from reaction of 5-amino-1-naphthol with 4,4′-dichlorobenzophenone in the presence of K2CO3. A series of novel polyamides were prepared by direct polycondensation of the diamine with various commercially available diacid chlorides including terephthaloyl chloride, isophthaloyl chloride, adipoyl chloride, and sebacoyl chloride. All the synthesized polyamides showed good solubility in amide type solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide and they exhibited inherent viscosities in the range of 0.44-0.52 dL/g. According to the DMTA analysis, the glass transition temperatures of the polyamides were found to be 131-187 °C. Thermogravimetric analysis indicated that the polymers were stable up to 190 °C and the 10% weight loss temperatures were recorded in the range of 350-418 °C in air atmosphere.  相似文献   

8.
A new dicarboxylic acid, 2,4-bis(N-trimellitoyl)triphenylamine, bearing two preformed imide rings was synthesized from the condensation of 2,4-diaminotriphenylamine and trimellitic anhydride at 1:2 molar ratio. A series of poly(amide-imide)s (PAIs) with inherent viscosities of 0.38-0.66 dl/g were prepared by triphenyl phosphite-activated polycondensation from the diimide-dicarboxylic acid with various aromatic diamines. All the resulting PAIs were readily soluble in a variety of organic solvents and formed strong and tough films via solution casting. These PAIs have useful levels of thermal stability associated with moderately high glass-transition temperatures (259-314 °C) and 10% weight loss temperatures in excess of 530 °C in nitrogen or in air.  相似文献   

9.
A series of new poly(amide-hydrazide)s were obtained by the direct polycondensation of 5-amino 5′-carbohydrazido-2,2′-bipyridine with commercially available diacids by means of triphenyl phosphite and pyridine in the N-methyl-2-pyrrolidone (NMP) solutions containing dissolved LiCl. The resulting hydrazide containing polymers exhibited inherent viscosities in the 0.42-0.64 dL/g range. All copolymers were soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The poly(amide-hydrazide)s had glass-transition temperatures (Tg) between 178 and 206 °C. All hydrazide copolymers could be thermally converted into the corresponding poly(amide-oxadiazole) approximately in the region of 300-400 °C, as evidenced by the DSC thermograms. The oxadiazole polymers and copolymers showed a dramatically decreased solubility and higher Tg when compared to their respective hydrazide prepolymers. They exhibited Tgs of 197-248 °C and were stable up to 450 °C in air or nitrogen.  相似文献   

10.
A new aromatic diacid monomer viz., 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid was synthesized starting from cardanol and was characterized by FTIR, 1H- and 13C NMR spectroscopy. A series of new aromatic polyamides containing ether linkages and pendant pentadecyl chains was prepared by phosphorylation polycondensation of 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid with five commercially available aromatic diamines viz., 1,4-phenylenediamine, 4,4′-oxydianiline, 4,4′-methylenedianiline, 1,3-phenylenediamine, and 4,4′-(hexafluoroisopropylidene)dianiline. Inherent viscosities of the polyamides were in the range 0.45-0.66 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C. The introduction of ether linkages and pendant pentadecyl chains into polyamides led to an enhanced solubility in N,N-dimethylacetamide and 1-methyl-2-pyrrolidinone at room temperature or upon heating. The polyamides could be solution-cast into tough, flexible and transparent films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-Ray diffractograms also displayed a diffuse to sharp reflection in the small-angle region (2θ = ∼2-5°) for the polyamides characteristics of formation of loosely to well-developed layered structure arising from packing of flexible pentadecyl chains. The glass transition temperature observed for the polyamides was in range 139-189 °C. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, of the polyamides was in the range 425-453 °C indicating their good thermal stability.  相似文献   

11.
A series of novel fluorinated aromatic polyamides derived from a new monomer, 2-(4-trifluoromethylphenoxy)terephthaloyl chloride (TFTPC), with various aromatic diamines were synthesized and characterized. The polyamides were obtained in high yields and moderately high inherent viscosities ranging from 1.07 to 1.16 dL/g. All the polyamides were amorphous and readily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N′-dimethylacetamide (DMAc), N,N′-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and could afford flexible and tough films via solution casting. The cast films exhibited good mechanical properties with tensile strengths of 82.8-107.3 MPa, elongation at break of 4.1-7.2%, and tensile modulus of 2.26-3.95 GPa. These polyamide films also exhibited good thermal stability with the glass transition temperature of 222-294 °C, the temperature at 5% weight loss of 442-472 °C in nitrogen. They exhibited low dielectric constants ranging from 3.25 to 3.39 (1 MHz), low moisture absorption in the range of 1.32-2.45%, high transparency with an ultraviolet-visible absorption cut-off wavelength in the 330-371 nm range, and excellent electrical properties.  相似文献   

12.
A series of polyimides (PIs) were copolymerized from 4-dodecyloxy-biphenyl-3′,5′-diaminobenzoate (DBPDA), 3,3′-dimethyl-4,4′-methylene-dianiline (DMMDA) and 4,4′-oxydi(phthalic anhydride) (ODPA) via one-step method. The PIs possessed excellent solubility in polar aprotic solvents and easily formed thin flexible films by solution casting. The glass-transition temperatures (Tgs) of the PIs were in the range of 219-242 °C and thermal decomposition temperatures in nitrogen occurred above 350 °C. The resultant PI films exhibited high transparency at wavelengths greater than 400 nm and induced excellent uniform vertical alignment of liquid crystal (LC). Even after the rubbing process, the pretilt angles of LC were still above 89°. The PI seems to be a prospective material for alignment layers in flexible displays.  相似文献   

13.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

14.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

15.
Dicarboxylic acid, 5-(3-acetoxynaphthoylamino)isophthalic acid was prepared in three steps. The direct polycondensation of this novel diacid with several aromatic diamines was studied in 1,3-diisopropylimidazolium bromide as an ionic liquid (IL) under microwave irradiation and conventional heating. The polymerization reaction was effectively preceded in IL, and triphenyl phosphite as an activating agent, and the resulting novel photoactive polyamides were obtained in high yields and moderate inherent viscosities in the range of 0.44-0.69 dL/g. Thermogravimetric analysis showed that polymers are thermally stable, 10% weight loss temperatures in excess of 390 and 470 °C, and char yields at 600 °C in nitrogen higher than 60%. These macromolecules exhibited maximum UV-vis absorption at 265 and 300 nm in N,N-dimethylformamide (DMF) solution. Their photoluminescence in DMF solution demonstrated fluorescence emission maxima around 361 and 427 nm for all of the polyamides. It is very important to note that, because of, high polarizability of ILs, they are very good solvents for absorbing microwaves.  相似文献   

16.
3,4-Di-(2′-hydroxyethoxy)benzylidenemalononitrile (3) was prepared and condensed with terephthaloyl chloride and adipoyl chloride to yield novel Y-type polyesters (4-5) containing 3,4-dioxybenzylidenemalononitrile groups as NLO-chromophores, which constituted parts of the polymer main-chains. The resulting polymers 4-5 are soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed thermal stability up to 300 °C in thermogravimetric analysis with glass-transition temperatures obtained from differential scanning calorimetry in the range 89-91 °C. The second harmonic generation (SHG) coefficients (d33) of poled polymer films at the 1064 nm fundamental wavelength were around 2.47 pm/V. The dipole alignment exhibited high thermal stability even at 10 °C higher than Tg, and there is no SHG decay below 100 °C due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.  相似文献   

17.
A new dicarboxylic acid chloride (2) bearing three preformed imide rings was synthesized by treating N-(3,5-diaminophenyl)phthalimide with trimellitic anhydride followed by refluxing with thionyl chloride. A novel family of aromatic poly(ester-imide)s with inherent viscosities of 0.27-0.35 dl g−1 were prepared from 2 with various bisphenols such as resorcinol (3a), hydroquinone (3b), 2,2′-dihydroxybiphenyl (3c), 4,4′-dihydroxybiphenyl (3d), bisphenol-A (3e), 2,2′-dimethyl-4,4′-dihydroxybiphenyl (3f), 1,5-dihydroxynaphthalene (3g), 2,7-dihydroxynaphthalene (3h), and 2,2′-dihydroxy-1,1′-binaphthyl (3i) by high-temperature solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher. All of the resulted polymers were fully characterized by FT-IR and NMR spectroscopy and elemental analyses. The poly(ester-imide)s exhibited excellent solubility in some polar organic solvents. From differential scanning calorimetry, the polymers showed glass-transition temperatures between 259 and 353 °C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis and the 10% weight loss temperatures of the poly(ester-imide)s were found to be in the range between 451 and 482 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide-angle X-ray diffraction.  相似文献   

18.
Two new aromatic diamines containing preformed amide linkages, viz., N,N′-(4-pentadecyl-1,3-phenylene)bis(4-aminobenzamide) I and N,N′-(4-pentadecyl-1,3-phenylene)bis(3-aminobenzamide) II, were synthesized by reaction of 4-pentadecylbenzene-1,3-diamine with 4-nitrobenzoylchloride and 3-nitrobenzoylchloride, followed by reduction of the respective dinitro derivatives. A series of new poly(amideimide)s was synthesized by polycondensation of I and II with four commercially available aromatic dianhydrides, viz., pyromellitic dianhydride (PMDA), 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) in N,N-dimethylacetamide (DMAc) employing conventional two step method via poly(amic acid) intermediate followed by thermal imidization. Reference poly(amideimide)s were synthesized by polycondensation of N,N′-(1,3-phenylene)bis(4-aminobenzamide) and N,N′-(1,3-phenylene)bis(3-aminobenzamide) with the same aromatic dianhydrides. Inherent viscosities of poly(amideimide)s containing pendent pentadecyl chains were in the range 0.37-1.23 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C indicating the formation of medium to high molecular weight polymers. The poly(amideimide)s containing pendent pentadecyl chains were found to be soluble in N,N-dimethylacetamide, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and pyridine and could be cast into transparent, flexible and tough films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-ray diffractograms also displayed sharp reflection in the small angle region (2θ ≈ 3°) for poly(amideimide)s containing pentadecyl chains indicating the formation of layered structure arising from packing of flexible pentadecyl chains. The glass transition temperatures observed for reference poly(amideimide)s were in the range 331-275 °C and those for poly(amideimide)s containing pendent pentadecyl chains were in the range 185-286 °C indicating a large drop in Tg owing to the “internal plasticization” effect of pentadecyl chains. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, were in the range 460-480 °C indicating their good thermal stability.  相似文献   

19.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

20.
A series of aromatic diacylhydrazides containing pendent flexible alkoxy chains, viz., 5-butyloxyisophthalicacid dihydrazide, 5-octyloxyisophthalicacid dihydrazide, 5-dodecyloxyisophthalicacid dihydrazide and 5-hexadecyloxyisophthalicacid dihydrazide were synthesized by the hydrazinolysis reaction of the corresponding aromatic esters with hydrazine hydrate. Diacylhydrazides were each polycondensed with aromatic dianhydrides, viz., 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA) to obtain new poly(amideimide)s. Poly(amideimide)s had inherent viscosity in the range 0.55-0.88 dL/g in N,N-dimethylacetamide (DMAc) at 30 ± 0.1 °C. Poly(amideimide)s were found to be soluble in DMAc, N,N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP) and pyridine and could be cast into tough, flexible and transparent films from a solution in DMAc. X-ray diffractograms revealed that poly(amideimide)s with longer alkoxy chains had layered structures. Glass transition temperature of poly(amideimide)s containing pendent flexible alkoxy chains were in the range 215-245 °C. Temperature at 10% weight loss was in the range 380-410 °C in nitrogen atmosphere indicating good thermal stability of poly(amideimide)s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号