首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this work, a new method based on single drop microextraction (SDME) preconcentration using tetrachloromethane (CCl(4)) as extraction solvent was proposed for the spectrophotometric determination of cadmium in rice and water samples. The influence factors relevant to SDME, such as type and volume of extractant, stirring rate and time, dithizone concentration, pH, drop volume and instrumental conditions were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.5 ng L(-1), with sensitivity enhancement factor (EF) of 128. The different maximum absorption wavelength caused by the different extraction acidity compared with some conventional works and the enhancement effect of acetone (dilution solvent) for the spectrophotometric determination were the two key factors of the high EF and sensitivity. The proposed method was applied to the determination of rice and water samples with satisfactory analytical results. The proposed method was simple, rapid, cost-efficient and sensitive.  相似文献   

2.
A dispersive liquid–liquid microextraction (DLLME) method combined with solvolysis reaction for extraction of the carbamate fungicide benomyl as carbendazim from water samples is described. The method is based on the extraction of benomyl from acidified sample solution and its conversion into carbendazim via solvolysis reaction with DMF as organic solvent. The proposed DLLME method was followed by HPLC with fluorimetric detection for determination of benomyl. The proposed method has good linearity (0.998) with wide linear dynamic range (0.01–25 mg/L) and low detection limit (0.0033 mg/L), making it suitable for benomyl determination in water samples.  相似文献   

3.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

4.
张吉苹  蒋新娣  黄薇  秦倩  周乔 《色谱》2018,36(5):458-463
建立了基于分子络合的分散液液微萃取(DLLME)方法,以磷酸三丁酯为萃取剂,以甲醇为分散剂,与高效液相色谱联用检测了环境水样中麦草畏和2,4-二氯苯氧乙酸(2,4-D酸)2种苯氧羧酸类除草剂,对影响前处理效果的因素(包括水样的pH值、萃取剂的种类和体积、分散剂的种类和体积、反萃液的pH值、反萃液的体积和盐浓度等)进行了详细考察,在最佳萃取条件下(水样体积10 mL,水样的pH值为0~1.0、100 μL磷酸三丁酯萃取剂、1000 μL甲醇分散剂、0.01 mol/L的氢氧化钾反萃液的体积为80 μL),2种苯氧羧酸类除草剂在0.50~1000 μg/L范围内具有良好的线性,相关系数不小于0.9985,麦草畏和2,4-D酸的检出限分别为0.44 μg/L和0.49 μg/L,富集倍数分别为85和90,在实际样品中的加标回收率为75.7%~104.0%。该方法基于分子络合反应机理,将新型萃取剂磷酸三丁酯应用于分散液液微萃取,与HPLC联用实现了麦草畏和2,4-D酸的富集与检测,为环境水样中苯氧羧酸类除草剂的检测提供了新的前处理方法。  相似文献   

5.
A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium–DDTC complex was formed and extracted into the fine droplets of HMIMPF6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L− 1, and the characteristic mass (m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L− 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2–106%.  相似文献   

6.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

7.
The pressurized liquid extraction (PLE) followed by dispersive liquid–liquid micro‐extraction (DLLME) has been developed for extraction of volatile components in tobacco. 35 volatile components were detected by gas chromatography mass spectrometry (GC‐MS). Methanol–methyl tert‐butyl ether (MTBE) (8:2, v/v) was selected as PLE extraction solvent. The optimized DLLME procedure, 3 mL of pure water and 1.0 mL tobacco extract solution, 40 μL of chloroform as extraction solvent, 0.5 mL of acetonitrile as disperser solvent, was validated. Under the optimum conditions, the enrichment factors were in the range of 96‐159. The limits of detection were between 0.14 and 0.33 μg/kg. The repeatability of the proposed method, expressed as relative standard deviation, varied between 4.3 and 7.5% (n = 6). The recoveries of the analytes evaluated by fortification of tobacco samples were in the range of 84.7‐96.4%. Compared with the conventional sample preparation method for determination of volatile components in tobacco, the proposed method was quick and easy to operate, and had high‐enrichment factors and low consumption of organic solvent.  相似文献   

8.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME–SFO) was for the first time combined with field‐amplified sample injection (FASI) in CE to determine four β2‐agonists (cimbuterol, clenbuterol, mabuterol, and mapenterol) in bovine urine. Optimum BGE consisted of 20 mM borate buffer and 0.1 mM SDS. Using salting‐out extraction, β2‐agonists were extracted into ACN that was then used as the disperser solvent in DLLME–SFO. Optimum DLLME–SFO conditions were: 1.0 mL ACN, 50 μL 1‐undecanol (extraction solvent), total extraction time 1.5 min, no salt addition. Back extraction into an aqueous solution (pH 2.0) facilitated direct injection of β2‐agonists into CE. Compared to conventional CZE, DLLME–SFO–FASI–CE achieved sensitivity enhancement factors of 41–1046 resulting in LODs in the range of 1.80–37.0 μg L?1. Linear dynamic ranges of 0.15–10.0 mg L?1 for cimbuterol and 15–1000 μg L?1 for the other analytes were obtained with coefficients of determination (R2) ≥ 0.9901 and RSD% ≤5.5 (n = 5). Finally, the applicability of the proposed method was successfully confirmed by determination of the four β2‐agonists in spiked bovine urine samples and accuracy higher than 96.0% was obtained.  相似文献   

9.
A simple and highly sensitive method developed for preconcentration and spectrophotometric determination of ultra trace amounts of azide ion (N 3 ? ) in water and biological samples using dispersive liquid-liquid microextraction (DLLME) technique. The method is based on ion association formation of azide ion with malachite green and extraction of the ion pairing product using DLLME technique. Some important parameters, such as reaction conditions and the kind and volume of extraction solvent and disperser solvent were studied and optimized. The calibration curve was linear in the range of 0.5–50 μg/L of azide ion. Also, the enrichment factor and extraction recovery obtained were 24.7 and 98.7%, respectively. The method was applied to the determination of azide ion in water and biological samples.  相似文献   

10.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

11.
A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L−1 and 3.3% for lead and 0.12 μg L−1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.  相似文献   

12.
Dispersive liquid–liquid microextraction (DLLME) and hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) combined with HPLC–DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H2SO4 as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7–6.4% and 14.2–15.9%, respectively; and for HF-LLLME were 0.7–5.2% and 3.3–10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.  相似文献   

13.
《Analytical letters》2012,45(15):2198-2209
Dispersive liquid-liquid microextraction (DLLME) is an attractive miniaturized technique that utilizes microliter volumes of extraction solvents. In this study, a DLLME technique was employed for the determination of four major trihalomethane (THM) compounds and analyzed using gas chromatography-electron capture detection. Optimization was conducted in terms of type and volume of disperser solvent, type and volume of extraction solvent, and addition of salt and extraction time. Optimized conditions employed methanol (0.25 mL) as the disperser solvent containing carbon disulfide (20 µL) as the extraction solvent. The linear range was 0.020–4.00 µg/L. Low limits of detection for the analytes were obtained in the range of 0.01 to 0.24 µg/L with enrichment factors ranging from 95–283. The relative recoveries of THMs from water samples at spiking level of 2 µg/L were in the range of 79.9 to 103.4%. This method was successfully applied to the determination of THM formation potential (THMFP) in river water samples. It was found that the concentration of THMFP in three Malaysian rivers were below the maximum permissible limits of World Health Organization (WHO).  相似文献   

14.
This study describes an extraction method based on silylated extraction vessel-dispersive liquid–liquid microextraction (SEV-DLLME) for preconcentration of some triazole pesticides (penconazole, hexaconazole, tebuconazole, diniconazole, triticonazole, and difenconazole) from aqueous samples. For this purpose, the interior surface of funnel-shaped extraction vessel is activated by concentrated NaOH and HCl solutions, silylated by trimethylchlorosilane (TMCS) and used in extraction of the analytes from a relatively high volume of aqueous sample. The adsorbed analytes are desorbed by methanol, which acts as a dispersive solvent in the following DLLME method. In the first step, the effects of different factors i.e., concentrations of NaOH, HCl, and silylated agent and their contact times were studied using central composite design (CCD) and response surface method. Extraction time, extraction solvent (chloroform) volume, dispersive solvent (methanol) volume, centrifugation rate and time, and salting-out effect in DLLME procedure were optimized in the same way using CCD, in the second step. High enrichment factors (EFs) (more than 1,000 in most cases) and low detection limits (at sub μg L?1 level) are attainable by using gas chromatography-flame ionization detection. The repeatability and reproducibility of the proposed method are good and the relative standard deviations (RSD %) for six repeated experiments (C = 100 μg L?1 of each pesticide) are less than 7.25%. Finally, the method was successfully applied in determination of analytes in some aqueous samples such as wastewater, well water, and some fruit juice samples.  相似文献   

15.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

16.
In this work, the potential of a symmetric dialkyl‐substituted ionic liquid (IL), 1,3‐dipenthylimidazolium hexafluorophosphate ([PPIm][PF6]), as extraction solvent in dispersive liquid–liquid microextraction (DLLME) has been studied for the analysis of a group of three natural (estriol, 17β‐estradiol, and 17α‐estradiol) and four synthetic (17α‐ethynylestradiol, diethylstibestrol, dienestrol, and hexestrol) estrogenic compounds as well as one mycotoxin with estrogenic activity (zearalenone) in different types of water samples (Milli‐Q, mineral, and wastewater). Separation, determination, and quantification were developed by HPLC‐DAD and a fluorescence detector (FD) connected in series. Factors influencing the IL‐DLLME procedure (sample pH, amount of IL, type and volume of disperser solvent, ionic strength, and assistance of vortex agitation) were investigated and optimized by means of a step‐by‐step approach. Once the optimum extraction conditions were established (10 mL of water at pH 8, 60 mg of [PPIm][PF6], 500 μL of ACN as disperser solvent and vortex agitation for 1 min), the calibration curves of the whole method (IL‐DLLME‐HPLC‐DAD/FD) were obtained and precision and accuracy were evaluated. It was demonstrated that the developed methodology was repeatable, accurate, and selective with limits of detection in the 0.30–0.57 μg/L and 13.8–37.1 μg/L range for FD and DAD, respectively. Relative recovery values were higher than 85% for the different types of water samples and the Student's t test demonstrated that there were not significant differences between the added and the found concentration.  相似文献   

17.
A simple, rapid, efficient, and environmentally friendly method for the determination of five triazine herbicides in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME), coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). The water samples were directly used for DLLME extraction. For soil samples, the target analytes were first extracted by water-methanol (99:1, v/v). In the DLLME extraction method, chloroform was used as an extraction solvent, and acetonitrile as a dispersive solvent. Under the optimum conditions, the enrichment factors of DLLME were in the range between 183-221. The linearity of the method was obtained in the range of 0.5-200 ng/mL for the water sample analysis, and 1-200 ng/g for the soil samples, respectively. The correlation coefficients ranged from 0.9968 to 0.9999. The limits of detection were 0.05-0.1 ng/mL for the water samples, and 0.1-0.2 ng/g for the soil samples. The proposed method has been successfully applied to the analysis of target triazine herbicides (simazin, atrazine, prometon, ametryn, and prometryn) in water and soil samples with satisfactory results.  相似文献   

18.
《Analytical letters》2012,45(11):1787-1801
A rapid and novel two-step dispersive liquid–liquid microextraction and dispersive micro-solid phase extraction method was established for the separation and enrichment of trace cadmium, nickel, and copper in food and environmental water prior to determination by inductively coupled plasma-mass spectrometry (ICP-MS). In the first microextraction step, carbon tetrachloride was employed to extract metal-diethyldithiocarbamate chelates from aqueous solution with ultrasound. In the following step, Fe3O4 magnetic nanoparticles were added and used to collect the analytes in the organic solvent. The sample pH, type and volume of extraction solvent, mass of magnetic nanoparticles, concentration of the chelating agent, concentration of sodium chloride, and sonication time were optimized. The linear dynamic range was from 0.01 to 20 micrograms per liter with correlation coefficients between 0.9990 and 0.9992. Enrichment factors were 78, 79, and 81 for cadmium, nickel, and copper, respectively. The limits of detection for cadmium, nickel, and copper were 0.007, 0.009, and 0.017 micrograms per liter, with relative standard deviations from 1.1 to 2.6 percent. The developed method was validated by the determination of cadmium, nickel, and copper in rice and mussel certified reference materials, food, and environmental water with satisfactory results.  相似文献   

19.
萃取催化光度法测定痕量铜   总被引:16,自引:2,他引:14  
研究了在pH5.5的弱酸性介质中,利用邻菲罗啉活化铜(Ⅱ)催化过氧化氢氧化邻氨基酚显色的指示反应,用萃取平衡控制反应时间,水相中邻氨基酚的浓度和反应程度,建立了萃取催化光度法测定痕量铜的新方法。方法的线性范围为0.00050 ̄0.10mg/L,检测限为5.0×10^-7g/L。用于水和粮食中痕量铜的测定,结果满意。  相似文献   

20.
A dispersive liquid‐liquid microextraction (DLLME) technique was proposed for the enrichment and graphite furnace atomic absorption spectrometric (GFAAS) determination of Cu2+ in water samples. In this method a mixture of 480 μL acetone (disperser solvent) containing 26 μg S,S‐bis(2‐aminobenzyl)‐dithioglyoxime (BAT) ligand and 20 μL carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL aqueous sample containing copper ions (analyte). Thereby, a cloudy solution formed. After centrifugation, the fine droplets containing the extracted copper complex were sedimented at the bottom of the conical test tube. This phase was collected by a microsyring and after dilution by methanol, 20 μL of it was injected into the graphite tube of the instrument for analysis. Effects of some parameters on the extraction, such as extraction and disperser solvent type and volume, extraction time, salt concentration, pH and concentration of the chelating agent were optimized. The response surface method was used for optimization of the effective parameters on the extraction recovery. Under these conditions, an enrichment factor of 312 was obtained. The calibration graph was linear in the rage of 2–50 μ L−1 Cu2+ with a detection limit of 0.03 μg L−1 and a relative standard deviation (RSD) for five replicate measurements of 3.4% at 20 μg L−1 Cu2+. The method was successfully applied to the determination of Cu2+ in some spring water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号