首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A family of bis-terdentate iridium(III) complexes is reported which contain a cyclometalated, N/\C[wedge]N-coordinating 1,3-di(2-pyridyl)benzene derivative. This coordination mode is favored by blocking competitive cyclometalation at the C4 and C6 positions of the ligand. Thus, 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyxH) reacts with IrCl3 x 3H2O to generate a dichlorobridged dimer [Ir(dpyx-N,C,N)Cl(mu-Cl)]2, 1. This dimer is cleaved by DMSO to give [Ir(dpyx)(DMSO)Cl2], the X-ray crystal structure of which is reported here, confirming the N/\C/\N coordination mode of dpyx. The dimer 1 can also be cleaved by a variety of other ligands to generate novel classes of mononuclear complexes. These include charge-neutral bis-terdentate complexes of the form [Ir(N/\C/\N)(C/\N/\C)] and [Ir(N/\C/\N)(C/\N/\O)], by reaction of 1 with C/\N/\C-coordinating ligands (e.g., 2,6-diphenylpyridine and derivatives) and C/\N/\O-coordinating ligands (based on 6-phenylpicolinate), respectively. Treatment of 1 with terpyridines leads to dicationic complexes of the type [Ir(N/\C/\N)(N/\N/\N)]2+, while 2-phenylpyridine gives [Ir(dpyx-N/\C/\N)(ppy-C,N)Cl]. All of the charge-neutral complexes are luminescent in fluid solution at room temperature. Assignment of the emission to charge-transfer excited states with significant MLCT character is supported by DFT calculations. In the [Ir(N/\C/\N)(C/\N/\C)] class, fluorination of the C/\N/\C ligand at the phenyl 2' and 4' positions leads to a blue-shift in the emission and to an increase in the quantum yield (lambda(max) = 547 nm, phi = 0.41 in degassed CH(3)CN at 295 K) compared to the nonfluorinated parent complex (lambda(max) = 585 nm, phi = 0.21), as well as to a stabilization of the compound with respect to photodissociation through cleavage of mutually trans Ir-C bonds. [Ir(dpyx-N/\C/\N)(ppy-C,N)Cl] is an exceptionally bright emitter: phi = 0.76, lambda(max) = 508 nm, in CH(3)CN at 295 K. In contrast, the [Ir(N/\C/\N)(C/\N/\O)] complexes are much less emissive, shown to be due to fast nonradiative decay of the excited state, probably involving reversible Ir-O bond cleavage. The [Ir(N/\C/\N)(N/\N/\N)]2+ complexes are very feeble emitters even at 77 K, probably due to the almost exclusively interligand charge-transfer nature of the lowest-energy excited state in these complexes.  相似文献   

2.
Zn and Pd complexes of meso-tetraphenyltetranaphthaloporphyrins (Ph(4)TNP) exhibit strong infrared absorption bands and luminesce in solutions at room temperature. S1 --> S0 fluorescence (lambda(max) = 732 nm, phi = 5.3%) is the predominant emission in the case of ZnPh(4)TNP (1). This emission is in part due to the delayed fluorescence (phi = 1.1%). Phosphorescence (T1 --> S0) of 1 (lambda(max) = 973 nm) is very weak (phi = 0.04%) and occurs with lifetime of about 440 micros in deoxygenated DMF. In the case of PdPh(4)TNP (2), almost no S1 --> S0 fluorescence could be observed, while the main emission detected was T1 --> S0 phosphorescence (lambda(max) = 938 nm). The phosphorescence of 2 occurs with lifetime of about 65 micros and (phi=6.5%) in deoxygenated DMF solution. Metalloporphyrins 1 and 2 are promising near infrared dyes biomedical applications.  相似文献   

3.
7,16-Dihydroheptacenes (1-3) substituted at the 6, 8, 15, and 17 positions are synthesized as blue emitters potentially useful in organic light emitting diodes (OLEDs). The photophysical properties of 1-3 (lambda(max) = 424-428 nm, phi(F) = 0.15-0.21, tau(F) = 2.35-2.67 ns in CH2Cl2) are discussed. They are shown to be stable and efficient blue emitters in the solid state (phi(F) = 0.37-0.44). The X-ray crystal structure of 1 is reported.  相似文献   

4.
Diphenylgermylene (Ph2Ge) and its Ge=Ge doubly bonded dimer, tetraphenyldigermene (6a), have been characterized directly in solution for the first time by laser flash photolysis methods. The germylene is formed via (formal) cheletropic photocycloreversion of 3,4-dimethyl-1,1-diphenylgermacyclopent-3-ene (4a), which is shown to proceed in high chemical (>95%) and quantum yield (phi = 0.62) by steady-state trapping experiments with methanol, acetic acid, isoprene, and triethylsilane. Flash photolysis of 4a in dry deoxygenated hexane at 23 degrees C leads to the prompt formation of a transient assigned to Ph2Ge (lambda(max) = 500 nm; epsilon(max) = 1650 M(-1) cm(-1)), which decays with second-order kinetics (tau approximately 3 micros), with the concomitant growth of a second transient species that is assigned to digermene 6a (tau approximately 40 micros; lambda(max) = 440 nm). Analogous results are obtained from 1,1-dimesityl- and 1,1-dimethyl-3,4-dimethylgermacyclopent-3-ene (4b and 4c, respectively), which afford Mes2Ge (tau approximately 20 micros; lambda(max) = 560 nm) and Me2Ge (tau approximately 2 micros; lambda(max) = 480 nm), respectively, as well as the corresponding digermenes, tetramesityl- (6b; lambda(max) = 410 nm) and tetramethyldigermene (6c; lambda(max) = 370 nm). The results for the mesityl compound are compared to the analogous ones from laser flash photolysis of the known Mes2Ge/6b precursor, hexamesitylcyclotrigermane. The spectra of the three germylenes and two of the digermenes are in excellent agreement with calculated spectra, derived from time-dependent DFT calculations. Absolute rate constants for dimerization of Ph2Ge and Mes2Ge and for their reaction with n-butylamine and acetic acid in hexane at 23 degrees C are also reported.  相似文献   

5.
Dehydro[12]- and -[18]annulenes 3 and 4 fused with tetrafluorobenzene were newly synthesized by the copper-mediated oxidative coupling of 1,2-diethynyltetrafluorobenzene. The UV-vis spectra of 3 and 4 showed the maximum absorption to be almost identical to that of the corresponding unsubstituted benzodehydro[12]- and -[18]annulenes 1 and 2, respectively, while the reduction waves in cyclic voltammetry observed at potentials of -1.48 and -1.56 V vs Fc/Fc(+) for 3 and 4 were less negative than those for 1 and 2. In agreement with these results, theoretical calculations (B3LYP/6-31G(d)) indicated that the HOMO-LUMO gap is similar for 1 and 3 and for 2 and 4 but that the LUMO levels of 3 and 4 are apparently lowered by the electronegative fluorine substituents. The X-ray crystallography of single crystals grown from 3 (crystal A), 3.C(6)H(6) (crystal B), and a mixture of 1 and 3 (crystal C) demonstrated that the molecules of 3 are stacked in a slanted manner in crystals A and B, while those of 1 and 3 form sandwichlike 1:2 complexes (3.1.3) that are stacked in a columnar arrangement in crystal C. Despite the suitable packing for topochemical polymerization, crystals A-C were quite stable against photochemical reaction. In contrast, differential scanning calorimetry showed that the thermal polymerization occurred explosively at 120-135 degrees C.  相似文献   

6.
The molecular and electronic structures of the electron transfer series of four-coordinate square-planar nickel complexes with the ligand o-phenylenebis(N'-methyloxamidate), [NiL]z (z = 2-, 1-, 0), have been evaluated by DFT and TDDFT calculations, and most of their experimentally available structural and spectroscopic properties (X. Ottenwaelder et al., Dalton Trans., 2005, DOI: 10.1039/b502478a) have been reasonably reproduced at the B3LYP level of theory. The anionic species [NiL]2- and [NiL]- are genuine low-spin nickel II and nickel III complexes with diamagnetic singlet (S = 0) and paramagnetic doublet (S = 1/2) states, respectively. The nickel III complex presents shorter Ni-N(amidate) bond distances (1.85-1.90 A) than the parent nickel II complex (1.88-1.93 A) and characteristic LMCT bands in the NIR region (lambda max = 794 and 829 nm) while the analogous MLCT bands for the nickel(II) complex are in the UV region (lambda max = 346 and 349 nm). The neutral species [NiL] is a nickel III o-benzosemiquinonediimine pi-cation radical complex with a diamagnetic singlet (S = 0) and a paramagnetic triplet (S = 1) states fairly close in energy but fundamentally different in orbital configuration. The singlet metal-radical ground state results from the antiferromagnetic coupling between the 3d(yz) orbital of the Ni III ion (S(M) = 1/2) and the pi(b) orbital of the benzosemiquinone-type radical ligand (S(L) = 1/2), which have a large overlap and thus strong covalent bonding. The triplet metal-radical excited state involves the ferromagnetic coupling between the Ni III 3d(zx) orbital and the benzosemiquinone-type pi(b) orbital, which are orthogonal to each other. The singlet and triplet states of the nickel III pi-cation radical complex possess characteristic quinoid-type short-long-short alternating sequence of C-C bonds in the benzene ring, as well as intense MLCT transitions in the VIS (lambda max = 664 nm) and NIR (lambda max = 884 nm) regions, respectively.  相似文献   

7.
Synthesis of a novel bis(terpyridine) ligand, 4,4'-bis(2,2':6',2'-terpyridinyl)triphenylamine, utilizing triphenylamine, as a specific angle controller, has led to the self-assembly of a unique hexagonal metallomacrocycle family, [Fe6(2)6(PF6)12] and [Zn6(2)6(BF4)12], utilizing terpyridine-metal(II)-terpyridine connectivity. The crystal structure of the novel ligand shows that the angle between the two terpyridinyl moieties is 119.69 degrees , which enabled the formation of the hexagonal-shaped macrocycles. The crystal packing architectures of this starting ligand revealed channels induced by solvent encapsulation. Following complexation of this ligand with transition metals [Fe(II) or Zn(II)] in a one-pot reaction, the resultant structures were characterized by (1)H and (13)C NMR, UV/Vis and mass spectroscopies. The expected metal-to-ligand charge transfer (MLCT; lambda(max) = 582 nm) and emission (lambda(em) = 575 nm) characteristics were exhibited by both [Fe6(2)6(PF6)12] and[Zn6(2)6(BF4)12]. The photoelectrochemical characteristics of these hexagonal metallomacrocycles demonstrate that they can be used as sensitizers in dye-sensitized solar cells.  相似文献   

8.
A cell model of a 'house of cards'-like assembly of crystals is used for the study of the evolution of the shear modulus during sintering. The crystals are assumed to have a lozenge shape. The cell model takes different crystal-crystal contacts into account. The force needed to separate two sintered crystals is calculated using the minimum surface area (MSA) approximation. By varying the thickness, long axis, and short axis of the crystals, it is possible to make space-filing configurations which have a nonzero shear modulus at crystal volume fraction that can be as low as phi = 0.03. This is significantly lower than the volume fractions phi > 0.52 that are found in studies where the MSA approximation is applied to assemblies of spherical particles. It is found that sintering may cause a nonlinear volume fraction dependence of the shear modulus, which depends on the shape of the crystals, the type of crystal-crystal contacts, and the character of the crystal assembly. The calculated shear modulus is analyzed using the phenomenological expression (phi - phi0)beta, where phi0 represents the volume fraction at the start of sintering. The exponent beta is found to vary between 1 and 2. The interpretation of the shear modulus using a fractal model is also discussed.  相似文献   

9.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

10.
The remarkable luminescence properties of the platinum(II) complex of 1,3-di(2-pyridyl)benzene, acting as a terdentate N=C=N-coordinating ligand cyclometalated at C2 of the benzene ring ([PtL(1)Cl]), have been investigated, together with those of two new 5-substituted analogues [PtL(2)Cl] and [PtL(3)Cl] [HL(2) = methyl-3,5-di(2-pyridyl)benzoate; HL(3) = 3,5-di(2-pyridyl)toluene]. All three complexes are intense emitters in degassed solution at 298 K (lambda(max) 480-580 nm; phi(lum) = 0.60, 0.58, and 0.68 in CH(2)Cl(2)), displaying highly structured emission spectra in dilute solution, with lifetimes in the microsecond range (7.2, 8.0, and 7.8 micros). On the basis of the very small Stokes shift, the highly structured profiles, and the relatively long lifetimes, the emission is attributed to an excited state of primarily (3)pi-pi character. At concentrations >1 x 10(-)(5) M, structureless excimer emission centered at ca. 700 nm is observed. The X-ray crystal structure of [PtL(2)Cl] is also reported.  相似文献   

11.
在水热条件下, 用NaH2SIP与Pb(Ⅱ)盐, 以1,3-丙二胺(1,3-PDA)作为结构导向剂进行反应, 得到化合物[H3N(CH2)3NH3]•[Pb2(SIP)2]•6H2O(1). 同时采用单晶X射线衍射、X射线粉末衍射、元素分析、红外光谱和荧光光谱对化合物1进行了表征.  相似文献   

12.
1 INTRODUCTION The design and assembly of organic-inorganic solid-state materials with active physical properties, such as materials with electrical, magnetic and opti- cal properties, has become a focus of a great deal of interest in recent years[1, 2].…  相似文献   

13.
An easy way of producing three‐dimensional metal–organic coordination polymers involving zinc(II) benzene‐dicarboxylates is reported. The reaction of zinc oxide with benzene dicarboxylic acids in water yielded the expected hydrated zinc dicarboxylates. These zinc compounds were then suspended in dimethylsulfoxide and heated to above 100 °C for a couple of hours; the solutions were allowed after filtration to cool down to eventually deliver crystalline compounds displaying complex zeotype structures. The crystal structure of the title compound, [Zn2(ip)4(DMSO)2(H2O)·3 DMSO]n (ipH2 = isophthalic acid = 1,3‐benzenedicarboxylic acid, DMSO = dimethylsulfoxide), is reported for the first time and shows a three‐dimensional network where octahedrally and tetrahedrally coordinated zinc atoms (present in a 1:1 ratio) are linked by bridging isophthalate ligands. The complex coordination network exhibits a remarkable channel structure along the z‐axis. The related zinc terephthalate–DMSO complex was similarly prepared and the crystal structure determination revealed an already documented zeotypic structure: [{Zn4(OH)2(tp)3(DMSO)4} 2H2O]n (tpH2 = terephthalic acid = 1,4‐benzenedicarboxylic acid). Weak interactions as well as hydrogen bonds involving water molecules and carboxy groups play a major role in the formation of these complex three‐dimensional networks. In comparison, the zinc 1,2‐benzene‐dicarboxylate–DMSO complex could not be isolated, even under more drastic conditions. The higher symmetry of the coordination network found in the zinc terephthalate–DMSO complexes was incidentally corroborated by 13C CP/MAS spectroscopy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
2,4‐Trifluoromethylquinoline (TFMAQ) derivatives that have amine ( 1 ), methylamine ( 2 ), phenylamine ( 3 ), and dimethylamine ( 4 ) substituents at the 7‐position of the quinoline ring were prepared and crystallized. Six crystals including the crystal polymorphs of 2 (crystal GB and YG) and 3 (crystal B and G) were obtained and characterized by X‐ray crystallography. In solution, TFMAQ derivatives emitted relatively strong fluorescence (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =418–469 nm and Φf(s)=0.23–0.60) depending on the solvent polarity. From Lippert–Mataga plots, Δμ values in the range of 7.8–14 D were obtained. In the crystalline state, TFMAQ derivatives emitted at longer wavelengths (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464–530 nm) with lower intensity (Φf(c)=0.01–0.28) than those in n‐hexane solution. The polymorphous crystals of 2 and 3 emitted different colors: 2 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =470 and 530 nm with Φf(c)=0.04 and approximately 0.01 for crystal GB and YG, respectively; and 3 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464 and 506 nm with Φf(c)=0.28 and approximately 0.28 for crystal B and G, respectively. In both crystal polymorphs of 2 and 3 , crystals GB and G showed emission color changes by heating/melting/cooling cycles that were representative. By following the color changes in heating at the temperature below the melting point with X‐ray diffraction measurements and X‐ray crystallography, the single‐crystal‐to‐single‐crystal transformations from crystal GB to YG for 2 and from crystal B to G for 3 were revealed.  相似文献   

15.
Anthanthrene (1) derivatives substituted at the 4,10 and 6,12 positions (2-6) were synthesized as promising candidates for organic light emitting diodes (OLEDs). The emission of these compounds can be manipulated in the blue region (lambda(max) = 437-467 nm) through structural modifications. Photophysical and electrochemical properties (phi(F) = 0.20-0.47; tau(F) = 2.97-6.06 ns; HOMO-LUMO energy gap = 2.25-2.56 eV) as well as geometry optimized structures of 1-6 are reported.  相似文献   

16.
Novel columnar liquid crystalline compounds N,N'-bis(3,4,5-trialkoxylphenyl)ureas 1a-c (R = n-C(8)H(17), n-C(12)H(25), and n-C(16)H(33)) were synthesized, and their phase transitions were measured by differential scanning calorimetery. The superstructures were investigated by X-ray diffraction, polarized light optical microscopy, and IR spectroscopy. The compounds exhibited both rectangular and hexagonal columnar phases in which the urea molecules in each column were stacked in one direction with strong hydrogen bonds. To confirm the ferroelectric switching, optoelectronic experiments were carried out, and the hexagonal columnar phases of 1b and 1c gave a sharp peak of spontaneous polarization in response to an applied triangular wave electric field (0.1-18 Hz). This is the first example of ferroelectrically switchable columnar liquid crystal phases generated by achiral molecules.  相似文献   

17.
The 355 nm laser flash photolysis of nalidixic acid at pH 9.2 leads to the formation of the nalidixate anion triplet state (absorption lambda max = 620 nm; 5700 less than or equal to epsilon T less than or equal to 9000 M-1cm-1; 0.6 less than or equal to phi T less than or equal to 1). The first order triplet state decay (kT = 7.7 x 10(3) s-1) is accompanied by a diffusion controlled triplet-triplet annihilation. Oxygen efficiently quenches the triplet state (k = 3.2 x 10(9) M-1s-1). The nalidixate radical dianion (absorption lambda max = 650 nm; epsilon = 3000 M-1cm-1) is produced by the diffusion controlled reductive quenching of the triplet state by tryptophan and tyrosine. The superoxide anion (O2-.) is produced by diffusion controlled reaction of the radical dianion with oxygen. The O2-. is characterized by its reactions with ferricytochrome c and superoxide dismutase. The physiological form of nalidixic acid is thus a good Type I and Type II photosensitizer.  相似文献   

18.
The complex has been synthesized and characterized by spectroscopic techniques and single-crystal X-ray analysis. The crystal is orthorhombic , space group P212121 with a=1.6620(3)nm, b=1.7300(4)nm, c=0.5450(1)nm and Z=4. In the crystal lattice, the molecules create a two-dimensional network structure through hydrogen bonds. The C-H…O intermolecular hydrogen bonds connect the title complex to form layer super-molecular plane structure perpendicular to the axis b, with the layers stacked by the Van der Waals interaction. CCDC: 195309.  相似文献   

19.
The heterodinuclear d(9)-d(9) title compound 1, whose crystal structure has been solved, reacts with dppm [bis(diphenylphosphino)methane] in the presence of NaBF4 to generate the salt [ClPd(mu-dppm)2Pt(eta(1)-dppm)][BF4] (2a), which contains a Pt-bound dangling dppm ligand. 2a has been characterized by 1H and 31P NMR, Fourier transform Raman [nu(Pd-Pt) = 138 cm(-1)], and UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 366 nm]. In a similar manner, [ClPd(mu-dppm)2Pt(eta(1)-dppm=O)][BF4] (2b), ligated with a dangling phosphine oxide, has been prepared by the addition of dppm=O. The molecular structure of 2b has been established by an X-ray diffraction study. 2a reacts with 1 equiv of NaBH4 to form the platinum hydride complex [(eta(1)-dppm)Pd(mu-dppm)2Pt(H)][BF4] (3). Both 2a and 3 react with an excess of NaBH4 to provide the mixed-metal d(10)-d(10) compound [Pd(mu-dppm)3Pt] (4). The photophysical properties of 4 were studied by UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 460 nm] and luminescence spectroscopy (lambda(emi) = 724 nm; tau(e) = 12 +/- 1 micros, 77 K). The protonation of 1 and 4 leads to [ClPd(mu-dppm)2(mu-H)PtCl]+ (5) and 3, respectively. Stoichiometric treatment of 1 with cyclohexyl or xylyl isocyanide yields [ClPd(mu-dppm)2Pt(CNC6H11)]Cl (6a) and [ClPd(mu-dppm)2Pt(CN-xylyl)]Cl (6b) ligated by terminal-bound CNR ligands. In contrast, treatment of 1 with the phosphonium salt [C[triple bond]NCH2PPh3]Cl affords the structurally characterized A-frame compound [ClPd(mu-dppm)2(mu-C=NCH2PPh3)PtCl]Cl (6c), spanned by a bridging isocyanide ligand. The electrochemical reduction of 2a at -1.2 V vs SCE, as well as the reduction of 5 in the presence of dppm, leads to a mixture of products 3 and 4. Further reduction of 3 at -1.7 V vs SCE generates 4 quantitatively. The reoxidation at 0 V of 4 in the presence of Cl- ions produces back complex 2a. The whole mechanism of the reduction of 1 has been established.  相似文献   

20.
The reactions between [Pd(P-P)(OTf)2] (where P-P=dppp or dppf) and two different bipyridyl ligands (=1,3-bis(4-pyridylmethyl)urea and=1,3- bis(pyridinylmethyl)benzenedicarboxamide) containing hydrogen-bonding units have been studied. The X-ray crystal structures of three of these assemblies have been solved showing them to be the [2+2] metallo-macrocycles [Pd(P-P)(n)]2(OTf)4 [P-P=dppp, n=1, (); P-P=dppp, n=2, (); P-P=dppf, n=1, ()]. To confirm whether the dimeric assembly of one of these species () is retained in solution, several investigations have been carried out. 1H NMR studies in DMSO and high resolution ESI mass spectrometry have shown that is in equilibrium with a larger [3+3] metallo-macrocycle. The equilibrium between these two species can be modified by changing the temperature, concentration or solvent. Also, addition of certain anions (e.g. [H2PO4]-) to the mixture shifts the equilibrium favoring the formation of the [2+2] metallo-macrocycle over the [3+3] (initially present in a larger proportion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号