首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过水热法,在黑磷(BP)纳米片表面生长FeOOH纳米材料,制备出FeOOH/BP纳米复合材料。作为电化学析氧反应(OER)催化剂,该复合材料在20 mA·cm-2时的过电位仅为191 mV,Tafel斜率为49.9 mV dec-1;在循环1 000圈后,过电位仅仅增加了3 mV,且循环过程中元素价态不变,表现出优秀的稳定性。纳米FeOOH负载于BP表面,客观上能隔断氧气对BP的氧化,保护BP的载流子传导性能。同时,生长的FeOOH颗粒尺度小,结晶性弱,这有利于丰富其活性位点,增大活性面积。  相似文献   

2.
通过水热法,在黑磷(BP)纳米片表面生长FeOOH纳米材料,制备出FeOOH/BP纳米复合材料。作为电化学析氧反应(OER)催化剂,该复合材料在20 mA·cm-2时的过电位仅为191 mV,Tafel斜率为49.9 mV·dec-1;在循环1 000圈后,过电位仅仅增加了3 mV,且循环过程中元素价态不变,表现出优秀的稳定性。纳米FeOOH负载于BP表面,客观上能隔断氧气对BP的氧化,保护BP的载流子传导性能。同时,生长的FeOOH颗粒尺度小,结晶性弱,这有利于丰富其活性位点,增大活性面积。  相似文献   

3.
设计高效的催化剂对于电解水制氢至关重要。基于过渡金属硒化物(TMSe)的高催化活性和金属有机骨架(MOFs)的灵活结构,我们提出了一种将MOFs与TMSe复合的策略,在导电基底泡沫镍(NF)上生长的复合材料不仅继承了2种单体的优点,还有效地改善了MOFs导电性差、TMSe易团聚的缺点。MoSe2/Co-MOF/NF在碱性溶液中展示出优异的电催化产氧活性,在电流密度为10 mA·cm-2时其过电位仅为242 mV,塔菲尔斜率仅为50.64 mV·dec-1。此外,该材料在碱性溶液中经1 000圈循环伏安(CV)循环测试和30 h的恒电压电解测试均表现出良好的稳定性。  相似文献   

4.
李英杰  王鑫  周昱成 《无机化学学报》2023,39(10):1905-1913
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

5.
设计高效的催化剂对于电解水制氢至关重要。基于过渡金属硒化物(TMSe)的高催化活性和金属有机骨架(MOFs)的灵活结构,我们提出了一种将MOFs与TMSe复合的策略,在导电基底泡沫镍(NF)上生长的复合材料不仅继承了2种单体的优点,还有效地改善了MOFs导电性差、TMSe易团聚的缺点。MoSe2/Co-MOF/NF在碱性溶液中展示出优异的电催化产氧活性,在电流密度为10 mA·cm-2时其过电位仅为242 mV,塔菲尔斜率仅为50.64 mV·dec-1。此外,该材料在碱性溶液中经1 000圈循环伏安(CV)循环测试和30 h的恒电压电解测试均表现出良好的稳定性。  相似文献   

6.
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

7.
利用CoFe层状双金属氢氧化物(CoFe LDH)准平行纳米片阵列作为载体前驱体,通过原位负载及煅烧方式,实现了含有氧空位的 MoO2纳米颗粒在纳米片阵列表面的生长。电化学研究结果表明,所得 CoFeOx/MoO2纳米阵列电极具有高析氢反应(HER)催化活性。该电极在10和1 000 mA·cm-2时的HER过电位分别为40和217 mV。在50 mA·cm-2的电流密度下,该电极可以稳定运行125 h。  相似文献   

8.
通过简便的两步电沉积法在泡沫镍表面有效复合非晶态Ni3S2材料与富缺陷的NiFe双金属羟基氧化物,从而构建了NiFe/Ni3S2/NF三维分级纳米异质电极。受益于非晶态Ni3S2和富缺陷NiFe材料的结构和催化优势,以及异质界面的强电子相互作用,使得NiFe/Ni3S2/NF催化电极表现出优异的析氧催化性能:达到100 mA·cm-2时的析氧过电位仅为273 mV,远优于大多数已报道的Ni/Fe基复合材料。值得注意的是,在1 mol·L-1 KOH溶液中,仅需~372 mV的过电位即可稳定输出1 000 mA·cm-2的高电流密度达27 h以上。  相似文献   

9.
利用改进的Hummers法制备了氧化石墨烯(GO), 以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2, 4, 6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明, AgNPs/GO对TNP有较强的电催化活性, 在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆, 电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8 mol·cm-2, 在所研究电位下的速率常数为9.745×10-5 cm·s-1。在pH 6.8的磷酸缓冲液中, 当富集电位为-0.70 V, 富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7 mol·L-1范围内成良好线性关系, 相关系数为0.995 8, 检出限可达1.0×10-9 mol·L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测, 加标回收率在 97.6%~103.9%之间。  相似文献   

10.
采用化学还原和电位置换法制备了CoPt 纳米空心球, 该催化剂对甲醇氧化表现出较好的电催化活性.透射电镜(TEM)、能量散射光谱(EDS)和电化学循环伏安实验结果表明, 在0.1 mol·L-1 H2SO4+0.1 mol·L-1CH3OH中进行测试时, CoPt 纳米空心球发生了去合金化过程, 催化剂表面Co元素溶解, 形成了富Pt 表面, 表现出更好的电催化活性, 同时表现出较好的结构稳定性. 采用原位电化学红外光谱在分子水平研究了CoPt 纳米空心球上甲醇氧化过程, 发现甲醇在CoPt 纳米空心球氧化中间产物主要为CO, 且CO表现出异常红外效应, 与CO为探针分子在CoPt纳米空心球上得到的红外光谱结果一致. 研究结果表明, 去合金化方法是一种有效调节催化剂表面组成和性能的手段, 原位电化学红外光谱是潜在的原位研究有机小分子氧化机理的方法, 在燃料电池中将得到广泛的应用.  相似文献   

11.
将磷化镍纳米片均匀负载到石墨烯(G)上制备出Ni2P/G复合材料,并将其作为硫载体构筑了硫基复合材料(S/Ni2P/G)。研究表明,磷化镍纳米片对可溶性多硫化物具有强的化学作用和较高的电催化活性,使S/Ni2P/G硫基复合材料表现出良好的电化学性能。特别是,在高硫含量(80.3%)和低电解液用量(15μL·mg-1)条件下,S/Ni2P/G硫基复合材料展现出1 164.7mAh·g-1的质量比容量和良好的循环稳定性。此外,S/Ni2P/G复合材料具有高的振实密度(1.02 g·cm-3),其体积比容量高达954.0mAh·cm-3,约为S/G复合材料体积比容量的1.6倍。  相似文献   

12.
以氯化钨和氧化石墨烯(GO)为原料,乙醇为溶剂,一步合成了WO3纳米棒/石墨烯纳米复合材料(WO3/RGO). 将WO3/RGO纳米复合材料用于锂离子电池负极,并通过充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)技术综合考察了该材料的储锂性能. 结果显示,在0.1C (1C=638 mA·g-1)倍率下,复合物的首次放电比容量达到761.4 mAh·g-1,100次循环后可逆容量仍保持在635 mAh·g-1,保持率为83.4%. 即使在5C倍率下容量仍高达460 mAh·g-1. 由此说明,WO3/RGO纳米复合物具有优异的循环稳定性及倍率性能,可望用于高性能锂离子电池.  相似文献   

13.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

14.
通过控制水热反应温度以及氧化石墨烯(GO)与高锰酸钾的填料比, 合成了两组部分还原的GO-K2Mn4O8纳米复合材料. X射线衍射(XRD)分析说明水热过程中合成了α-MnO2和一种新的晶相K2Mn4O8.通过X射线光电子能谱(XPS)分析了水热反应前后氧化石墨的含氧官能团的变化. 扫描电子显微镜(SEM)显示样品由片状还原的氧化石墨烯构成, 其表面附有许多小的纳米颗粒, 这种结构有利于储能时电子的传递. 通过这两组复合材料的结构分析, 更好地理解了材料的电化学性能的变化. 利用循环伏安法和恒流充放电测试比较了材料的电容性能. 用1 mol·L-1的硫酸钠做电解液, 电位范围是0-1 V, 在1 A·g-1的电流密度下, 测得的样品最佳比电容达到251 F·g-1, 能量密度为32 Wh·kg-1, 功率密度为18.2 kW·kg-1. 并且在5 A·g-1的电流密度下循环1000次后样品的比电容仍维持在初始比电容的88%.  相似文献   

15.
经一步水热法在泡沫镍(NF)上原位生长获得了AlCo-LDH/NF (LDH=层状双氢氧化物)催化剂。基于AlCo-LDH的高表面积和良好相界面,催化剂表现出了优异的电催化析氧反应(OER)活性。在碱性介质中,当电流密度为200 mA·cm-2时,AlCo3-LDH/NF催化剂具有419 mV的低过电位和50.04 mV·dec-1的低Tafel斜率。  相似文献   

16.
通过两步法先在泡沫镍(nickel foam,NF)上原位生长Co金属有机骨架(Co metal-organic framework,Co-MOF)纳米片阵列,再浸入不同浓度Ni2+离子溶液刻蚀Co-MOF纳米片,在NF表面得到NiCo水滑石(NiCo layered double hydroxide,NiCo-LDH)。NiCo-LDH/NF继承了Co-MOF纳米片结构形成一级纳米片阵列,并在一级纳米片表面形成次级纳米片褶皱。在2 mmol Ni(NO3)2·6H2O溶液中刻蚀得到的NiCo-LDH/NF表现出高容量、高倍率性能,在电流密度为5 mA·cm-2时比电容为7 764.5 mF·cm-2,电流密度为20 mA·cm-2时比电容为6 098.2 mF·cm-2,容量保持率为78.5%,在20 A·g-1电流密度下经过5 000次长循环后,容量保持率为85.9%。与活性炭组装的混合电容器达到38.9 Wh·kg-1的最大能量密度和8 000.0 W·kg-1的最大功率密度。  相似文献   

17.
采用原位溶剂热生长法设计合成了锌掺杂Co9S8纳米颗粒。各种表征技术和性能测试结果表明:锌掺杂Co9S8纳米颗粒的孔尺寸为18 nm,比表面积为23 m2·g-1;同时微量的锌掺杂显著增强了Co9S8的电催化析氢(HER)活性及电容器性能。在HER性能测试中,当电流密度为10 mA·cm-2时电位为-361 mV,电流密度最高可达38.26 mA·cm-2,且具有优异的循环稳定性。同时在电容器性能测试中具有较高的比电容,当电流密度为1 A·g-1时,质量比电容和面积比电容分别为235.48 F·g-1和812.4 mF·cm-2。  相似文献   

18.
采用简单的热解-硫化两步法成功制备了一种新型的富氮掺杂碳空心纳米笼(NC)负载双元金属硫化物纳米颗粒(CoNixSy)的复合材料 CoNixSy/NC。该策略以丁二酮肟镍为镍源,增加了活性位点,同时前驱体 ZIF-8@Ni-ZIF-67的核壳结构为空心碳纳米笼的构建提供了可能性。这种独特的负载多金属硫化物纳米颗粒的中空结构使CoNixSy/NC作为电极材料时具有更多的活性位点、更高的导电性和结构稳定性,从而使其具有较高的比容量(1 A·g-1时比容量为629.2 F·g-1),优异的循环稳定性(1 A·g-1下1 000次循环测试后容量保持率为93.4%)。当将其进一步组装成对称超级电容器后,在1 A·g-1下可提供207.2 F·g-1的比电容,1 000圈循环稳定后的容量保持率为85.36%。  相似文献   

19.
首先通过水热过程在泡沫镍(NF)上生长出钼酸镍纳米棒阵列(NMO/NF),再依次利用水热硫化和气相磷化法改性钼酸镍纳米棒阵列获得三维自支撑析氢电催化剂(PS-NMO/NF)。研究表明,硫化作用诱导钼酸镍纳米棒阵列向类珊瑚球结构转变并形成具有高电化学活性表面积的无定形硫化物壳层,显著提高钼酸镍析氢反应(HER)活性。进一步磷化处理,表面形成的无定形磷酸盐与硫化物形成丰富的异质界面,促进了电子转移,进一步提升了电极的HER性能。在1 mol·L-1 KOH电解液中,电流密度为10 mA·cm-2时,PS-NMO/NF所对应的析氢过电势为93 mV; 100 mA·cm-2的电流密度所对应的析氢过电势仅为180mV,Tafel斜率为67 mV·dec-1,而且在20 h内可稳定运行,无明显衰减。  相似文献   

20.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为 1 A·g-1时,比电容为 1 560.7 F·g-1,在电流密度为 40 A·g-1时循环 2 000次后,比电容仍为初始比电容的 76.7%。将 NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在 400 W·kg-1的功率密度下可提供 29.0 Wh·kg-1的能量密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号