首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在理想平推流反应器中进行了模拟热解气对模拟烟气中NO、N2O的还原实验研究,考察了反应温度、过剩空气系数,模拟热解气中CH4、CO、H2、NH3入口浓度与模拟烟气中NO、N2O入口浓度对NO、N2O与总氮转化率的影响。结果表明,向NH3添加可燃气体CO、H2、CH4可使NO还原窗口向低温方向移动150~200 K,该温度窗口为1 073~1 223 K;但NH3-CO-H2-CH4-O2体系对NO、N2O的还原分解作用依赖于体系的O2浓度,仅在富燃料情形(过剩空气系数λ为0.6)下可分别达60.6%、100%的NO、N2O脱除率;在反应温度1 073~1 223 K及过剩空气系数λ为0.6条件下,较高的热解气CH4、CO、H2浓度可增加NO排放,但有利于还原N2O;增加NH3入口浓度可增加NO分解率。  相似文献   

2.
采用量子化学密度泛函理论(DFT)对NO与NHi自由基的反应机理进行了研究,并结合经典过渡态理论对各反应速率常数进行了计算。结果表明,NO与NH2自由基的反应体系可通过六个反应通道形成N2+H2O、N2O+H2和N2H+OH。从能量变化和反应速率两方面考虑,产物N2+H2O最容易生成,其最佳反应通道为NO+NH2→→N2+H2O;NO与NH自由基的反应体系可通过七个反应通道形成N2+OH、N2O+H和N2H+O;其中,N2+OH最容易生成,最佳反应通道为NO+NH→→N2+OH。比较发现, NH比NH2自由基更易与NO发生反应生成N2。因此,在实际运行中改变操作条件,实现NH2等向NH方向转化,有利于NOx的还原。  相似文献   

3.
共沉淀法制备CeZrYLa+LaAl 复合氧化物载体, 等体积浸渍法制备了Pt 催化剂, 用于研究理论空燃比天然气汽车(NGVs)尾气净化反应中CH4与NO的反应规律. 并考察了10% (体积分数, φ)H2O和计量比O2对CO2存在时的CH4+NO反应的影响. 结果表明: 对于不同条件下的NO+CH4反应, 主要生成N2和CO2, 高温区有CO生成. 低温区无O2时可以生成N2O, 有O2时可以生成NO2; 添加10% (φ)的H2O后, CH4 转化活性降低, NO转化活性基本不变, 这是由于H2O减弱了CH4与CO2的重整反应, 但是对CH4与NO的反应基本没有影响; 添加计量比的O2后, CH4转化活性提高, 而NO转化活性降低, 这是由于O2和NO之间存在竞争吸附, CH4被O2氧化为主要反应, 从而减弱了NO的转化; 同时添加计量比的O2和10% (φ) H2O, CH4与CO2的重整反应受到抑制,CH4与NO的反应、甲烷蒸汽重整反应和甲烷被O2氧化反应同时发生, CH4和NO的转化活性均提高.  相似文献   

4.
钟梅  马凤云 《燃料化学学报》2013,41(12):1427-1436
在连续进出料的流化床中研究了热解温度为850 ℃时,含有O2、H2、CO、CO2、CH4的反应气氛对热解产物分配规律及产品组成的影响。采用Raman、BET等测试方法对不同热解气氛下制得半焦的品质进行了评价,结合热重分析了影响半焦反应活性的因素。结果表明,无O2气氛下,H2与CO2存在时降低了焦油产率,而CO与CH4促进了焦油的生成。CH4的裂解析碳使半焦产率上升。O2的加入使CO2、CO含量明显增加,半焦及焦油产率降低。N2中引入O2时,PAHs含量降低。CH4促进了烷基萘与苯类的生成,CO则抑制酚类裂解生成苯类。CO2的气化作用促进了微孔的生成,相应地,半焦的比表面积快速增加,半焦的反应活性也最高。CO歧化与CH4热裂解产生的析碳堵塞了部分孔道,降低了比表面积。H2与CH4所产生的氢自由基能渗透到半焦内部,引起半焦结构的缩聚,进而影响氧化反应活性。  相似文献   

5.
采用共沉淀法制备了LaMnAl11O19六铝酸盐催化剂,采用XRD、BET和XPS对样品结构进行了表征,并通过模拟生物质气化气的燃烧实验和NH3单独氧化实验,分别考察了催化燃烧和均相燃烧过程中NH3的转化特性。利用原位漫反射红外光谱(in-situ DRIFT)法在线研究了NH3在催化剂表面的吸附和氧化信息。结果表明,焙烧后催化剂形成磁铅石(MP)结构的六铝酸盐晶体,且具有较大的比表面积,Mn以+2、+3价形式存在晶体中。均相燃烧下模拟气中的NH3在500℃开始反应,随之就有NO生成。催化燃烧工况下NH3氧化曲线和模拟气中NH3的转化曲线相差不大,NH3的起燃温度为310℃,反应后随之就有NO生成,NO在350℃~800℃保持一个较高的浓度。NO2的生成温度较高,并仅在较窄的温度区间内出现,在整个燃烧过程中仅检测到几个10-6的N2O,反应过程中有40%以上的NH3转化成NO。DRIFT结果表明,催化剂作用下NH3的转化遵循 -NH反应机理,即催化剂表面吸附的NH3分解产生 -NH,-NH与氧原子(O)反应生成HNO,再进一步反应生成N2或N2O,或是 -NH直接与氧分子(O2)反应生成NO。  相似文献   

6.
利用热天平对比研究了大同煤及煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧行为,探讨CO2和H2O气化反应对其富氧燃烧特性的影响。结果表明,在5%氧气浓度下,煤粉在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧速率按顺序依次降低。氧气浓度降低到2%,由于CO2和H2O气化反应的作用,煤粉在高温区的整体反应速率按顺序依次增大。当氧气浓度为5%时,煤焦在O2/CO2中的燃烧速率要低于O2/N2中的燃烧速率,但燃烧反应推迟后气化反应的参与使得煤焦在O2/H2O/CO2中的整体反应速率显著升高。当氧气浓度降低到2%后,随着温度的升高,在CO2气化反应的作用下,煤焦在O2/CO2中的整体反应速率逐渐高于O2/N2中的燃烧速率。在O2/H2O/CO2中,由于H2O在共气化中起主要作用,煤焦在O2/H2O/CO2高温区的整体反应速率进一步升高。动力学分析表明,在5%氧浓度时,煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的表观活化能依次升高。随着氧气浓度的降低,在不同反应气氛中的表观活化能均有所下降。  相似文献   

7.
NH3不仅是关键的工业化学原料,而且是未来可再生能源的无碳燃料和可运输的载体.目前,工业合成NH3仍然以传统的Haber-Bosch反应为主,需要300-500°C的高温和20-30 MPa的压力.为克服这些缺点,研究者设计了NO-CO-H2O反应体系.在该反应中,通过有毒气体CO在H2O存在的条件下将NO还原成NH3,这是一种近乎理想的生产NH3的方法.目前,已经报道了Pt/Al2O3在NO-CO-H2O反应中具有较高的NH3选择性,但反应温度(400°C)仍然较高,不利于实际应用.因此,在低温条件下引入光照,通过光辅助热催化NO-CO-H2O反应来获得NH3产品,是一种极具发展潜力的方法.研究人员通过密度泛函理论(DFT)研究发现, Cu在NO还原反应中具有很高的活性和NH3选择性,且Cu在水煤气(C...  相似文献   

8.
为探讨固体氧化物燃料电池(solid oxide fuel cell, SOFC)中干甲烷浓度对反应的影响,采用色谱在线测量阳极尾气,总结阳极尾气的变化规律。在此基础上,分析干甲烷在固体氧化物燃料电池Ni-YSZ阳极上的反应,寻找干甲烷浓度与电流对电池阳极反应影响的数学关系。结果表明,随着电流密度的增加,低浓度甲烷按顺序发生CH4+O2- → CO+2H2+2e-、CH4+2O2- → CO+H2O+H2 +4e-、CH4+3O2- → CO+2H2O + 6e-、CH4+4O2- → CO2+2H2O+8e-反应,高浓度甲烷只发生甲烷的第一个氧化反应,中浓度甲烷发生前两个或前三个反应。依据法拉第第一定律及反应物之间的关系,确定甲烷的低、中、高浓度的判定依据分别为:qv(CH4)≤I/(4F)、I/(4F)≤qv(CH4)≤I/(2F)、qv(CH4)≥I/(2F)。  相似文献   

9.
采用水热法合成了钛纳米管(TiNT),以400℃焙烧后得到的TiO2纳米管为载体,采用浸渍法制备了MnOx/TiNT催化剂,用于低温NH3选择性催化还原脱NO反应(SCR)。BET、TEM、XRD及TG测试表明,经过400℃焙烧之后的钛纳米管主要成分为锐钛矿型TiO2,所制备的催化剂活性组分分散性较好。在模拟烟气条件下,考察了锰负载量、空速、O2含量、氨氮比及进口NO浓度对MnOx/TiNT的SCR催化性能的影响。在150℃、\[NH3\]/\[NO\]比为1.2、O2浓度为3%、NO浓度为0.06%、空速GHSV为23613.8h-1、Mn的负载量为5%~15%的条件下,NO的转化率达到95%以上。反应气氛中单独通入水会造成催化剂的活性下降;切断H2O,催化剂的活性可以恢复至初始水平。温度越高,催化剂抗水性能越好,而且水存在情况下的抗硫性能优于其单独抗硫性能。再次切断H2O和SO2,催化剂的活性逐渐上升,但不能恢复到初始水平。  相似文献   

10.
以加拿大油砂沥青大于420℃的减压渣油(BVR)为原料,对比研究其在CO/H2-H2O和N2体系中的热改质特性,通过系统分析BVR在H2-H2O、CO-H2O、N2-H2O等不同氢源下的热改质特性以揭示CO/H2-H2O对渣油热改质的作用机制,最后探讨合成气压力、含水量以及温度对BVR临CO/H2-H2O改质生焦倾向的影响。结果表明,与临氮改质相比,相同反应条件下,合成气和水可使BVR热改质的生焦诱导期延长3.5-6.5 min;相同生焦率(约0.1%)时,合成气和水可显著提升BVR热改质降黏率,410℃时相对临氮改质的降黏率为29.1%,而420℃时可达54.6%。比较不同氢源下BVR热改质的生焦诱导期、改质油黏度和安定性、渣油转化率发现,H2-H2O、CO-H2O、N2-H2O等均对BVR热改质表现出与CO/H2-H2O相同的促进效果,各氢源作用活性的大小顺序为H2-H2O > CO/H2-H2O > CO-H2O > N2-H2O。由此可知,CO/H2-H2O对渣油热改质的促进作用可归因于氢气、CO水热变换新生氢和水热裂解的综合效应,且其中氢气的作用仍最显著。合成气压力、含水量和反应温度可通过影响不同氢源的贡献而调控BVR临CO/H2-H2O改质生焦倾向。低成本易获取的合成气可以提供BVR热降黏改质所需氢源,水能够通过CO水热变换反应供出新生活泼氢而协同合成气实现BVR高效改质。  相似文献   

11.
采用V2O5-WO3/TiO2催化剂,对选择性催化还原(SCR)烟气脱硝装置出口PM2.5物性进行分析,考察SO2氧化与PM2.5形成的关系,并采用原位漫反射红外光谱(DRIFTS)对SCR脱硝过程中NH4HSO4的生成及SCR脱硝温度条件下的NH4HSO4热稳定性进行了分析研究。结果表明,经SCR脱硝后,亚微米级细颗粒数浓度明显升高,且形貌特征及元素组成发生变化,形成的细颗粒主要为NH4HSO4及少量(NH4)2SO4;SCR烟气脱硝对PM2.5排放特性的影响主要通过以下途径:一是SO3与SCR烟气脱硝系统中的NH3、H2O反应形成;二是SO3与逃逸的NH3、H2O在SCR脱硝装置后续系统发生反应形成硫酸氢铵与硫酸铵;此外还与SO3和烟气中游离的CaO等碱土金属氧化物反应形成硫酸盐,随烟气携带出SCR脱硝装置有关。  相似文献   

12.
刁智俊  赵跃民  陈博  段晨龙 《化学学报》2012,70(19):2037-2044
采用ReaxFF动力学方法模拟了非交联固化环氧树脂在不同温度和升温速率下的热解特性. 结果表明, 含N和含O桥键的断裂是热解的引发反应. 观察到H2O的4种主要的生成途径, 而这些反应途径都涉及到含羟基的前驱体. 当反应温度较低时, H2O为热解的主要产物. 而在高温条件下, 热解的主要产物为H2, 它主要为分子内/分子间脱氢反应和氢自由基的夺氢反应的产物; 高温同时促进了含石墨烯结构且分子量较大的碳团簇的形成. 除此之外, 还观察到了CH4, HCN, NH3和CO等小分子产物. 本文用ReaxFF动力学方法模拟所得的气体产物以及含类似石墨烯结构的碳团簇与实际实验结果一致, 说明ReaxFF动力学方法能为从分子水平上研究有机物高温热解反应提供了一种有效的途径.  相似文献   

13.
朱强  宫红  姜恒  王锐 《合成化学》2016,24(10):856-860
以过渡金属甲基磺酸盐[Mn(CH3SO3)2·2H2O, Cu(CH3SO3)2·4H2O, Co(CH3SO3)2·4H2O和Zn(CH3SO3)2·4H2O]为催化剂,在室温条件下催化醇的四氢吡喃化反应,并对反应条件进行了优化。结果表明:当醇用量为30 mmol,醇和3,4-二氢吡喃摩尔比为1.0 :1.1,甲基磺酸盐用量为1 mmol,二氯甲烷20 mL时,可高效催化醇的四氢吡喃化反应。与路易斯酸催化活性相比,过渡金属甲基磺酸盐催化醇的四氢吡喃化反应效果最好,催化酚的效果较差。用Mn(CH3SO3)2·2H2O和Cu(CH3SO3)2·4H2O催化正丁醇的四氢吡喃化反应,重复使用5次,收率分别为89%和92%。  相似文献   

14.
将醋酸铜热解制备的Cu2O/AC(活性炭)催化剂,在氧化(O2/N2)和还原(H2/N2、CO/N2)气氛下进行预处理。350 ℃下预处理4 h,氧化气氛中Cu2O完全被氧化为CuO,还原气氛中Cu2O被还原为单质铜。经CO/N2预处理的催化剂表面Cu0分散性好,催化活性显著升高。在常压固定床微型反应装置上测试,在140 ℃的反应温度下,碳酸二甲酯的时空收率和选择性分别达到了261.9 mg/(g·h)和74.7%。反应后,还原气氛(H2/N2、CO/N2)预处理的催化剂与Cu2O/AC催化剂中铜物种价态组成趋于一致,催化活性亦趋于一致。关联反应前后催化剂表面铜物种的变化和催化活性的差异,可以认为Cu0具有较高的初始催化活性,Cu2O活性和价态均较为稳定,CuO活性较低。  相似文献   

15.
以5-8 mm胜利褐煤为研究对象,利用固定床反应器,在400-700℃、CO2气氛下进行热解实验,研究了CO2气氛对煤热解气、液、固三相产物分布的影响,探讨了CO2对煤焦结构作用的机理。研究表明,与N2气氛相比,CO2气氛热解提高焦油和热解水产率,降低热解气和半焦产率;400和500℃时,CO2气氛下形成的半焦孔隙结构和总孔体积没有明显的变化,600和700℃时,CO2气氛下所得半焦的比表面积及孔容较N2气氛下的大,是与煤焦内部挥发分大量释放以及CO2进入孔道与活性位反应有关;煤热解过程中CO2的引入能促进煤焦中3-5环芳香结构的消耗,导致煤焦结构芳香度的提高;600和700℃时,CO2气氛下热解气中H2和CH4产率低,同时CO2能与煤焦发生气化反应显著提高CO含量。  相似文献   

16.
CuSO4(ZnSO4)-CO(NH2)2-H2O三元体系在30℃时的等温溶度研究   总被引:6,自引:0,他引:6  
报道了CuSO4(ZnSO4)-CO(NH2)2-H2O两个三元体系在30℃时的等温溶度及饱和溶液的折光率,绘制了相应的溶度图和折光率-组成图.两个三元体系中分别形成了组成为CuSO4·3CO(NH2)2·H2O(异成分溶解)和ZnSO4·CO(NH2)·2H2O(同成分溶解)的化合物,并通过元素分析、红外光谱、X射线粉末衍射及热分析对新相进行了表征.  相似文献   

17.
对甲烷自热重整进行了系统的热力学分析,并采用预混合层流模型结合甲烷氧化、蒸汽重整、干重整机理对反应过程进行了动力学分析。结果表明,甲烷自热重整的平衡产物及其浓度主要受温度、O2/CH4、H2O/CH4的影响;压力影响不是十分明显,主要影响达到平衡的速度。在715℃~730℃、压力0.7MPa~1.0MPa,控制O2/CH4在0.60~0.70、H2O/CH4在3.15~3.25,可以得到H2>68%、CO<10%的产物气,积炭率接近于0。动力学分析表明,自热重整过程分为两个主要阶段进行,在起始阶段主要发生甲烷氧化反应,产物主要为H2O和CO2;第二阶段以甲烷蒸汽重整反应为主,伴随水气变换反应(WGS)和微弱的干重整,H2CO和CO2为主要产物。调节初始水浓度可以控制快速氧化阶段反应速率,避免“热点”出现,抑制CO的生成。  相似文献   

18.
Ni-Mg-ZrO2催化剂上煤层甲烷三重整制合成气   总被引:2,自引:0,他引:2  
采用共沉淀法制备Ni-ZrO2和Ni-Mg-ZrO2催化剂,用BET、XRD、H2-TPR、CO2-TPD等技术对催化剂进行了表征。采用固定床流动反应装置,研究了催化剂在煤层甲烷三重整制合成气反应中的催化性能;考察了反应温度和原料气体组成对反应的影响。实验结果表明,Ni-Mg-ZrO2催化剂在反应温度800℃、常压、空速为30 000 mL/(g·h)、CH4/CO2/H2O/O2/N2=1.0/0.45/0.45/0.1/0.4的条件下,CH4转化率为99%,CO2转化率为65%左右,生成合成气H2/CO体积比为1.5,并在58 h的实验中催化剂活性和稳定性良好。这主要归因于催化剂中金属和载体之间的强相互作用、催化剂的高热稳定性和强碱性。此外,较高的反应温度有利于甲烷三重整反应的进行;通过调节原料气组成,可以获得不同H2/CO体积比的合成气。  相似文献   

19.
助剂MgO、CaO对甲烷水蒸气重整Ni/γ-Al2O3催化性能的影响   总被引:3,自引:1,他引:2  
采用固定床装置,考察了以共浸方式引入的助剂MgO、CaO对Ni/γ-Al2O3催化剂在甲烷水蒸气催化重整中的催化反应性能的影响。结果表明,在H2O/CH4/N2的摩尔比为2.86/1/3.28,GHSV为1800h-1,反应温度为700℃下,催化剂Ni-CaO/Al2O3催化性能最好;反应初期甲烷转化率可达到96.95%、CO选择性可达68.93%、H2收率可达73.58%。XRD和H2-TPR结果表明,CaO的存在使催化剂中的活性NiO组分增多,还原性和分散性能较好。利用热分析技术对积炭进行考察发现反应10h后的Ni-CaO/Al2O3催化剂上并未出现导致催化剂失活的炭物种。  相似文献   

20.
在常压下, 研究了添加气的种类(N2, He, Ar, H2, NH3, CO和CO2)对介质阻挡放电低碳烷烃(甲烷、 乙烷和丙烷)转化制低碳烯烃的影响. 结果表明, 以甲烷或乙烷为原料时, N2, He, Ar和CO的引入有利于提高原料的转化率和总烯烃的选择性; 而CO2, H2和NH3的引入对甲烷、 乙烷的转化率无明显影响, 但H2和NH3的引入会使总烯烃的选择性显著降低. 以丙烷为原料时, 所研究的添加气均可提高丙烷的转化率, 而只有CO的引入可提高总烯烃选择性. 综上所述, 80%(摩尔分数) CO添加量最有利于低碳烷烃转化成低碳烯烃, 对应的甲烷、 乙烷和丙烷的转化率分别提高了14.4%, 17.6%和42.8%, 总烯烃的选择性分别提高了19.9%, 25.0%和11.9%. 以CH4为例, 通过对放电电流波形和等离子体区物种的发射光谱(OES)研究发现, 引入CO能显著增加等离子体的电子密度, 并且体系中出现激发态O*物种(777.5和844.7 nm), 这种O*物种能够促进C-H键的断裂, 有利于烯烃的生成. 因此, 等离子体区电子密度的增加和激发态O*物种的出现可能是CH4-CO体系中CH4有效转化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号