首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The electroreduction of carbon dioxide (CO2) and carbon monoxide (CO) to liquid alcohol is of significant research interest. This is because of a high mass-energy density, readiness for transportation and established utilization infrastructure. Current success is mainly around monohydric alcohols, such as methanol and ethanol. There exist few reports on converting CO2 or CO to higher-valued diols such as ethylene glycol (EG; (CH2OH)2). The challenge to producing diols lies in the requirement to retain two oxygen atoms in the compound. Here for the first time, we demonstrate that densely-arrayed Cu nanopyramids (Cu-DAN) are able to retain two oxygen atoms for hydroxyl formation. This results in selective electroreduction of CO2 or CO to diols. Density Functional Theory (DFT) computations highlight that the unique spatial-confinement induced by Cu-DAN is crucial to selectively generating EG through a new reaction pathway. This structure promotes C–C coupling with a decreased reaction barrier. Following C–C coupling the structure facilitates EG production by (1) retaining oxygen and promoting the *COH–CHO pathway, which is a newly identified pathway toward ethylene glycol production; and, (2) suppressing the carbon–oxygen bond breaking in intermediate *CH2OH–CH2O and boosting hydrogenation to EG. Our findings will be of immediate interest to researchers in the design of highly active and selective CO2 and CO electroreduction to diols.

Densely-arrayed Cu nanopyramids have spatial confinement induced by the additional Cu–O bond. This promotes C–C coupling, regulates post-C–C coupling, and retains both oxygen atoms in an alternative pathway toward ethylene glycol formation from CO.  相似文献   

2.
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental–computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure–property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.

A higher degree of surface alloying and Zn concentration boosts the selectivity towards ethanol of CuZn catalysts in CO2 electroreduction.  相似文献   

3.
CO2 electroreduction is a promising technique for satisfying both renewable energy storage and a negative carbon cycle. However, it remains a challenge to convert CO2 into C2 products with high efficiency and selectivity. Herein, we report a nitrogen‐doped ordered cylindrical mesoporous carbon as a robust metal‐free catalyst for CO2 electroreduction, enabling the efficient production of ethanol with nearly 100 % selectivity and high faradaic efficiency of 77 % at −0.56 V versus the reversible hydrogen electrode. Experiments and density functional theory calculations demonstrate that the synergetic effect of the nitrogen heteroatoms and the cylindrical channel configurations facilitate the dimerization of key CO* intermediates and the subsequent proton–electron transfers, resulting in superior electrocatalytic performance for synthesizing ethanol from CO2.  相似文献   

4.
The selective cross-coupling of activated electrophiles with unactivated ones has been regarded as a challenging task in cross-electrophile couplings. Herein we describe a migratory cross-coupling strategy, which can overcome this obstacle to access the desired cross-coupling products. Accordingly, a selective migratory cross-coupling of two alkyl electrophiles has been accomplished by nickel catalysis. Remarkably, this alkyl–alkyl cross-coupling reaction provides a platform to prepare 2°–2° carbon–carbon bonds from 1° and 2° carbon coupling partners. Preliminary mechanistic studies suggest that chain-walking occurs at both alkyl halides in this reaction, thus a catalytic cycle with the key step involving two alkylnickel(ii) species is proposed for this transformation.

The selective cross-coupling of activated electrophiles with unactivated ones has been regarded as a challenging task in cross-electrophile couplings.  相似文献   

5.
The design of active, selective, and stable CO2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two‐coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1 mA cm?2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h?1, surpassing most reported metal‐based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO2 to the CO2.? intermediate and hence enhances CO2 electroreduction activity.  相似文献   

6.
Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm−2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd–O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2via an adsorption-electrolysis device.

Quasi-square cadmium hydroxide nanocrystals (Cdhy-QS) showed outstanding performance for electroreduction CO2 to CO.  相似文献   

7.
The large-scale deployment of CO2 electroreduction is hampered by deficient carbon utilization in neutral and alkaline electrolytes due to CO2 loss into (bi)carbonates. Switching to acidic media mitigates carbonation, but suffers from low product selectivity because of hydrogen evolution. Here we report a crown ether decoration strategy on a Cu catalyst to enhance carbon utilization and selectivity of CO2 methanation under acidic conditions. Macrocyclic 18-Crown-6 is found to enrich potassium cations near the Cu electrode surface, simultaneously enhancing the interfacial electric field to stabilize the *CO intermediate and accelerate water dissociation to boost *CO protonation. Remarkably, the mixture of 18-Crown-6 and Cu nanoparticles affords a CH4 Faradaic efficiency of 51.2 % and a single pass carbon efficiency of 43.0 % toward CO2 electroreduction in electrolyte with pH=2. This study provides a facile strategy to promote CH4 selectivity and carbon utilization by modifying Cu catalysts with supramolecules.  相似文献   

8.
The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2R, a two-step process, with first CO2R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2.  相似文献   

9.
With impressive progress in carbon capture and renewable energy, carbon dioxide (CO2) conversion into useful chemicals has become a potential tool against climate change. Electrochemical CO2 conversion into C2 products (ethylene and ethanol) is an especially economically promising approach and an active research area. Nonetheless, catalyst layer design for CO2 conversion is challenging because of the complex CO2-to-C2 reaction pathways. In this review, we highlight key ideas in catalyst layer design for CO2 conversion to C2 in the past few years. We identify three fundamental principles to control catalyst selectivity—local CO2 and CO concentration, local pH, and intermediate–catalyst interaction. To achieve these goals, we introduce design strategies for both catalytic materials and overall catalyst layer morphology.  相似文献   

10.
Conversion of CO2 into chemicals is a promising strategy for CO2 utilization, but its intricate transformation pathways and insufficient product selectivity still pose challenges. Exploiting new catalysts for tuning product selectivity in CO2 hydrogenation is important to improve the viability of this technology, where reverse water-gas shift (RWGS) and methanation as competitive reactions play key roles in controlling product selectivity in CO2 hydrogenation. So far, a series of metal-based catalysts with adjustable strong metal–support interactions, metal surface structure, and local environment of active sites have been developed, significantly tuning the product selectivity in CO2 hydrogenation. Herein, we describe the recent advances in the fundamental understanding of the two reactions in CO2 hydrogenation, in terms of emerging new catalysts which regulate the catalytic structure and switch reaction pathways, where the strong metal–support interactions, metal surface structure, and local environment of the active sites are particularly discussed. They are expected to enable efficient catalyst design for minimizing the deep hydrogenation and controlling the reaction towards the RWGS reaction. Finally, the potential utilization of these strategies for improving the performance of industrial catalysts is examined.

A series of metal oxide, phosphate, alloy, and carbide-based catalysts for selective CO2 hydrogenation are summarized, showing their abilities to switch CO2 methanation to RWGS.  相似文献   

11.
The electroreduction of CO2(CO2RR) into value-added chemicals is a sustainable strategy for mitigating global warming and managing the global carbon balance. However, developing an efficient and selective catalyst is still the central challenge. Here, we developed a simple two-step pyrolysis method to confine low-valent Ni-based nanoparticles within nitrogen-doped carbon(Ni-NC). As a result, such Ni-based nanoparticles can effectively reduce CO2 to CO, with a max...  相似文献   

12.
It is an appealing approach to CO2 utilization through CO2 electroreduction (CO2ER) to ethanol at high current density; however, the commonly used Cu-based catalysts cannot sustain large current during CO2ER despite their capability for ethanol production. Herein, we report that Ag+-doped InSe nanosheets with Se vacancies can address this grand challenge in a membrane electrode assembly (MEA) electrolyzer. As revealed by our experimental characterization and theoretical calculation, the Ag+ doping, which can tailor the electronic structure of InSe while diversifying catalytically active sites, enables the formation of key reaction intermediates and their sequential evolution into ethanol. More importantly, such a material can well work for large-current conditions in MEA electrolyzers with In2+ species stabilized via electron transfer from Ag to Se. Remarkably, in an MEA electrolyzer by coupling cathodic CO2ER with anodic oxygen evolution reaction (OER), the optimal catalyst exhibits an ethanol Faradaic efficiency of 68.7 % and a partial current density of 186.6 mA cm−2 on the cathode with a full-cell ethanol energy efficiency of 26.1 % at 3.0 V. This work opens an avenue for large-current production of ethanol from CO2 with high selectivity and energy efficiency by rationally designing electrocatalysts.  相似文献   

13.
While metal–organic frameworks (MOF) alone offer a wide range of structural tunability, the formation of composites, through the introduction of other non-native species, like polymers, can further broaden their structure/property spectrum. Here we demonstrate that a polymer, placed inside the MOF pores, can support the collapsible MOF and help inhibit the aggregation of nickel during pyrolysis; this leads to the formation of single atom nickel species in the resulting nitrogen doped carbons, and dramatically improves the activity, CO selectivity and stability in electrochemical CO2 reduction reaction. Considering the vast number of multifarious MOFs and polymers to choose from, we believe this strategy can open up more possibilities in the field of catalyst design, and further contribute to the already expansive set of MOF applications.

A metal–organic framework/polymer derived catalyst containing single-atom nickel species shows good performance for electroreduction of CO2 to CO.  相似文献   

14.
The [fac-Mn(bpy)(CO)3Br] complex is capable of catalyzing the electrochemical reduction of CO2 to CO with high selectivity, moderate activity and large overpotential. Several attempts have been made to lower the overpotential and to enhance the catalytic activity of this complex by manipulating the second-coordination sphere of manganese and using relatively stronger acids to promote the protonation-first pathway. We report herein that the complex [fac-Mn(bpy-CONHMe)(CO)3(MeCN)]+ ([1-MeCN]+; bpy-CONHMe = N-methyl-(2,2′-bipyridine)-6-carboxamide) as a pre-catalyst could catalyze the electrochemical reduction of CO2 to CO with low overpotential and high activity and selectivity. Combined experimental and computational studies reveal that the amide NH group not only decreases the overpotential of the Mn catalyst by promoting the dimer and protonation-first pathways in the presence of H2O but also enhances the CO2 electroreduction activity by facilitating C–OH bond cleavage, making [1-MeCN]+ an efficient CO2 reduction pre-catalyst at low overpotential.

The amide NH group decreases the overpotential of Mn-based CO2 reduction catalysts by promoting the dimer and protonation-first pathways in the presence of H2O and enhances the CO2 electroreduction activity by facilitating C–OH bond cleavage.  相似文献   

15.
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4, but selective and efficient synthesis of higher alcohols (C2+OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+OH from CO2 hydrogenation over K-modified Ni−Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni−Zn carbide (K-Ni3Zn1C0.7) by carburization of Zn-incorporated Ni0, which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C−C coupling to C2+OH rather than conventional CH4. This work opens a new catalytic avenue toward CO2 hydrogenation to C2+OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.  相似文献   

16.
《化学:亚洲杂志》2018,13(19):2800-2804
Here we report a partially oxidized palladium nanodot (Pd/PdOx) catalyst with a diameter of around 4.5 nm. In aqueous CO2‐saturated 0.5 m KHCO3, the catalyst displays a Faradaic efficiency (FE) of 90 % at −0.55 V vs. reversible hydrogen electrode (RHE) for carbon monoxide (CO) production, and the activity can be retained for at least 24 h. The improved catalytic activity can be attributed to the strong adsorption of CO2.− intermediate on the Pd/PdOx electrode, wherein the presence of Pd2+ during the electroreduction reaction of CO2 may play an important role in accelerating the carbon dioxide reduction reaction (CO2RR). This study explores the catalytic mechanism of a partially oxidized nanostructured Pd electrocatalyst and provides new opportunities for improving the CO2RR performance of metal systems.  相似文献   

17.
Electrocatalytic carbon dioxide reduction holds great promise for reducing the atmospheric CO2 level and alleviating the energy crisis. High‐performance electrocatalysts are often required in order to lower the high overpotential and expedite the sluggish reaction kinetics of CO2 electroreduction. Copper is a promising candidate metal. However, it usually suffers from the issues of poor stability and low product selectivity. In this work, bimetallic Cu‐Bi is obtained by reducing the microspherical copper bismuthate (CuBi2O4) for selectively catalyzing the CO2 reduction to formate (HCOO). The bimetallic Cu‐Bi electrocatalyst exhibits high activity and selectivity with the Faradic efficiency over 90% in a wide potential window. A maximum Faradaic efficiency of ~95% is obtained at –0.93 V versus reversible hydrogen electrode. Furthermore, the catalyst shows high stability over 6 h with Faradaic efficiency of ~95%. This study provides an important clue in designing new functional materials for CO2 electroreduction with high activity and selectivity.  相似文献   

18.
Immobilization of porphyrin complexes into crystalline metal–organic frameworks (MOFs) enables high exposure of porphyrin active sites for CO2 electroreduction. Herein, well-dispersed iron-porphyrin-based MOF (PCN-222(Fe)) on carbon-based electrodes revealed optimal turnover frequencies for CO2 electroreduction to CO at 1 wt.% catalyst loading, beyond which the intrinsic catalyst activity declined due to CO2 mass transport limitations. In situ Raman suggested that PCN-222(Fe) maintained its structure under electrochemical bias, permitting mechanistic investigations. These revealed a stepwise electron transfer-proton transfer mechanism for CO2 electroreduction on PCN-222(Fe) electrodes, which followed a shift from a rate-limiting electron transfer to CO2 mass transfer as the potential increased from −0.6 V to −1.0 V vs. RHE. Our results demonstrate how intrinsic catalytic investigations and in situ spectroscopy are needed to elucidate CO2 electroreduction mechanisms on PCN-222(Fe) MOFs.  相似文献   

19.
The electroreduction of carbon dioxide using renewable electricity is an appealing strategy for the sustainable synthesis of chemicals and fuels. Extensive research has focused on the production of ethylene, ethanol and n-propanol, but more complex C4 molecules have been scarcely reported. Herein, we report the first direct electroreduction of CO2 to 1-butanol in alkaline electrolyte on Cu gas diffusion electrodes (Faradaic efficiency=0.056 %, j1-Butanol=−0.080 mA cm−2 at −0.48 V vs. RHE) and elucidate its formation mechanism. Electrolysis of possible molecular intermediates, coupled with density functional theory, led us to propose that CO2 first electroreduces to acetaldehyde-a key C2 intermediate to 1-butanol. Acetaldehyde then undergoes a base-catalyzed aldol condensation to give crotonaldehyde via electrochemical promotion by the catalyst surface. Crotonaldehyde is subsequently electroreduced to butanal, and then to 1-butanol. In a broad context, our results point to the relevance of coupling chemical and electrochemical processes for the synthesis of higher molecular weight products from CO2.  相似文献   

20.
The electrochemical reduction of CO2 to produce sustainable fuels and chemicals has attracted great attention in recent years. It is shown that surface-modified carbons catalyze the CO2RR. This study reports a strategy to modify the surface of commercially available carbon materials by adding oxygen and nitrogen surface groups without modifying its graphitic structure. Clear differences in CO2RR activity, selectivity and the turnover frequency between the surface-modified carbons were observed, and these differences were ascribed to the nature of the surface groups chemistry and the point of zero charge (PZC). The results show that nitrogen-containing surface groups are highly selective towards the formation of CO from the electroreduction of CO2 in comparison with the oxygen-containing surface groups, and the carbon without surface groups. This demonstrates that the selectivity of carbon for CO2RR can be rationally tuned by simply altering the surface chemistry via surface functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号