首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum anticancer drugs are particularly in need of controlled drug delivery because of their severe side effects. Platinum(IV) agents are designed as prodrugs to reduce the side effects of platinum(II) drugs; however, premature reduction could limit the effect as a prodrug. In this work, a highly biocompatible, pH and redox dual‐responsive delivery system is prepared by using hybrid nanoparticles of human serum albumin (HSA) and calcium phosphate (CaP) for the PtIV prodrug of cisplatin. This conjugate is very stable under extracellular conditions, so that it protects the platinum(IV) prodrug in HSA. Upon reaching the acidic and hypoxic environment, the platinum drug is released in its active form and is able to bind to the target DNA. The Pt–HSA/CaP hybrid inhibits the proliferation of various cancer cells more efficiently than cisplatin. Different cell cycle arrests suggest different cellular responses of the PtIV prodrug in the CaP nanocarrier. Interestingly, this delivery system demonstrates enhanced cytotoxicity to tumor cells, but not to normal cells.  相似文献   

2.
The platinum complex cisplatin is in worldwide use since 1978 as anticancer agent. Disadvantages of the cisplatin therapy are both drug resistance and severe side effects. To avoid these drawbacks several strategies have been developed in tumor research. Patients treated with second‐generation platinum complexes experience already less severe side effects. Organometallic and coordination complexes with different metals can be used to target DNA as well as overexpressed proteins and enzymes in cancer cells. In contrast, delivery systems for anticancer drugs target cancer cells, while being selectively accumulated in tumor tissue.  相似文献   

3.
刘清华  杨萍  高传柱  杨波  钱韵旭 《化学通报》2017,80(11):995-1001
铂类抗癌药物凭借着独特的作用机制,已成为临床治疗中应用广泛的抗癌药物之一。但由于存在较为严重的毒副作用、耐药性等问题,限制了其在临床上的使用。为了改善它的这些不足,更大限度提高药物的生物利用度并尽量减少其副作用,使用靶向给药体系改变铂类药物体内递送方式受到了广泛关注。其中铂药-纳米金载药体系因其较大的载药量、易于修饰改造、癌细胞高通透性和滞留效应、无免疫原性等显著的特点而受到研究者们的重视,本文主要介绍近十年来铂类抗癌药物-纳米金载药体系的研究进展。  相似文献   

4.
Despite phenomenal clinical success, the efficacy of platinum anticancer drugs is often compromised due to inherent and acquired drug resistant phenotypes in cancers. To circumvent this issue, we designed two heterobimetallic platinum (II)-ferrocene hybrids that display multi-pronged anticancer action. In cancer cells, our best compound, 2 , platinates DNA, produces reactive oxygen species, and has nucleus, mitochondria, and endoplasmic reticulum as potential targets. The multi-modal mechanism of action of these hybrid agents lead to non-apoptotic cell death induction which enables circumventing apoptosis resistance and significant improvement in platinum cross resistance profile. Finally, in addition to describing detail mechanistic insights, we also assessed its stability in plasma and demonstrate anticancer efficacy in an in vivo A2780 xenograft model. Strikingly, compared to oxaliplatin, our compound displays better tolerability, safety profile and efficacy in vivo.  相似文献   

5.
New anticancer platinum(II) compounds with distinctive modes of action are appealing alternatives to combat the drug resistance and improve the efficacy of clinically used platinum chemotherapy. Herein, we describe a rare example of an antitumor PtII complex targeting a tumor‐associated protein, rather than DNA, under cellular conditions. Complex [(bis‐NHC)Pt(bt)]PF6 ( 1 a ; Hbt=1‐(3‐hydroxybenzo[b]thiophen‐2‐yl)ethanone) overcomes cisplatin resistance in cancer cells and displays significant tumor growth inhibition in mice with higher tolerable doses compared to cisplatin. The cellular Pt species shows little association with DNA, and localizes in the cytoplasm as revealed by nanoscale secondary ion mass spectrometry. An unbiased thermal proteome profiling experiment identified asparagine synthetase (ASNS) as a molecular target of 1 a . Accordingly, 1 a treatment reduced the cellular asparagine levels and inhibited cancer cell proliferation, which could be reversed by asparagine supplementation. A bis‐NHC‐ligated Pt species generated from the hydrolysis of 1 a forms adducts with thiols and appears to target an active‐site cysteine of ASNS.  相似文献   

6.
Platinum adducts are supposed to be the cytotoxic lesions in DNA after platinum-containing anticancer therapy. Various adducts are formed upon interaction of platinum complexes with nucleotides, but contribution of individual adducts to antitumor activity and toxicity of platinum complexes still remains to be examined. A capillary zone electrophoresis (CZE) method is described that is suitable to separate individual platinum adducts. We investigated the formation of adducts following the reaction of cis-diamminedichloroplatinum (II) (cisplatin) with various DNA nucleotides. Baseline separation of unmodified and modified nucleotides (adducts) was achieved using uncoated fused-silica capillaries and basic separation buffers. In order to elucidate the observed peak pattern, a coupled CZE-electrospray ionization-mass spectrometry (ESI)-MS approach was applied. After incubation of mononucleotides with cisplatin, monochloro, monoaqua and bifunctional adduct species were detected. Consequently, the migration order of nucleotides and individual platinum adducts could be determined. Moreover, the time-dependent conversion from monochloro to monoaqua and subsequently to bifunctional adducts was monitored. In conclusion, individual platinum adducts were separated by CZE and identified by CZE-ESI-MS. Formation and conversion of distinct species were confirmed. Potential applications comprise studies of novel platinum complexes, investigations of platinum-adduct formation with DNA, and determination of platinum-DNA adducts in cells.  相似文献   

7.
徐刚  姜平元  苟少华 《化学进展》2012,(9):1707-1719
多核铂配合物作为非经典铂抗肿瘤药物,其抗肿瘤机制与现有铂类抗肿瘤药物不同,因而在克服现有铂类抗肿瘤药物耐药性方面有着巨大的潜力。本文综述了多核铂类抗肿瘤药物的研究进展,以连接铂原子的桥配体结构的不同,可分为六大类:以烷基二胺及其衍生物为桥的多核铂配合物、以含氮杂环为桥的多核铂配合物、以羧酸根为桥的多核铂配合物、以卤素离子为桥的多核铂配合物、以含硫配体为桥的多核铂配合物及以其他配体为桥的多核铂配合物。本文还介绍了这几类多核铂配合物的抗肿瘤机理及在克服顺铂耐药性机理方面的研究进展。  相似文献   

8.
Ruthenium anticancer drugs have attracted an increasing interest in the last 20 years and two of them have entered clinical trials. Compared to platinum drugs, the complexes based on ruthenium are often identified as less toxic and capable of overcoming the resistance induced by platinum drugs in cancer cells. These activities were attributed to the transportation to tumour cells by transferrin and to the selective activation to more reactive species by the reducing environment of solid tumours as compared to healthy tissues. Ruthenium anticancer drugs have been almost always designed to mimic platinum drugs, particularly for targeting DNA. Indeed, none of the above properties has never been clearly demonstrated even for the ruthenium drugs that entered clinical trials. The suggestion for the future is to change the perspective when designing new chemical entities, abandoning the philosophy that guided the actual panel of ruthenium drugs and to look further into the fine mechanism by which the most relevant ruthenium complexes available kill the target tumour cells, then focusing on targets selective of tumour cells and responsible for cell growth and malignancy.  相似文献   

9.
Anticancer therapy by platinum complexes, based on nanocarrier‐based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis‐[PtCl2(NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross‐links on DNA.  相似文献   

10.
Platinum(II) anticancer drugs are among the most effective and often used chemotherapeutic drugs. In recent years, there has been increasing interest in exploiting inert platinum(IV) scaffolds as a prodrug strategy to mitigate the limitations of platinum(II) anticancer complexes. In this prodrug strategy, the axial ligands are released concomitantly upon intracellular reduction to the active platinum(II) congener, offering the possibility of conjugating bioactive co-drugs which may synergistically enhance cytotoxicity on cancer cells. Existing techniques of tethering bioactive molecules to the axial positions of platinum(IV) prodrugs suffer from limited scope, poor yields and low reliability. This report explores the applications of current chemoselective ligation chemistries to platinum(IV) anticancer complexes with the aim of addressing the aforementioned limitations. Here, we describe the synthesis of a platinum(IV) complex bearing an aromatic aldehyde functionality and explored the scope of imine ligation with various hydrazide and aminooxy functionalized substrates. As a proof of concept, we tethered a six sequence long peptide mimetic (AMVSEF) of the anti-inflammatory protein, ANXA1.  相似文献   

11.
Wu B  Davey CA 《Chemistry & biology》2008,15(10):1023-1028
Nucleosome positioning and reorganization regulate DNA site exposure in chromatin. Platinum anticancer agents form DNA adducts that disrupt nuclear activities, triggering apoptosis. Mechanistic insight would aid in the development of improved therapies to circumvent drug toxicity and resistance. We show that platinum adducts formed by reaction of cisplatin or oxaliplatin with the nucleosome core inhibit histone octamer-DNA sliding but do not cause significant alteration of positioning. Thus, adduct formation reinforces positional preferences intrinsic to the DNA sequence, which indicates that modulation of platinum drug site selectivity by histone octamer association may relate to nucleosome-specific properties of DNA. This sheds light on platinum drug-mediated inhibition of chromatin remodeling in vivo and suggests that adducts can shield their own repair and interfere with genomic activities by directly altering nucleosome dynamics.  相似文献   

12.
郭世祺  马荔 《大学化学》2020,35(1):40-46
顺铂在人类抗癌历程中发挥着里程碑式的作用,本文重点介绍顺铂的作用机理、致毒机理和细胞对其产生耐药性的机理,并由此指出铂类药物所存在的缺陷以及发展方向。  相似文献   

13.
20世纪60年代,美国密执安州立大学Rosenberg发现了顺铂具有抗癌活性,开辟了金属类抗肿瘤药物研究的新领域.经过40余年的研究,已相继成功开发了卡铂、奈达铂、奥沙利铂、舒铂、洛铂和双环铂等铂类抗肿瘤药物.虽然对于铂类抗肿瘤药物研究取得了一定的成绩,但在临床使用过程中也存在一些问题,如其毒副作用和抗药性,限制了其在临床上的进一步广泛应用.为了解决这些问题,科研工作者开始寻找新的金属类抗肿瘤药物以弥补现有铂类抗肿瘤药物的不足.在金属元素中,唯有钯(II)与铂(II)配合物具有相似或相同的结构特征,进而表现出相近或相似的化学性质.因此,继铂类抗肿瘤配合物后,钯(II)配合物作为潜在抗肿瘤药物成为一个诱人的领域.本文综述了近年来钯(II)类抗肿瘤药物的研究进展,并探讨了其构效关系,这对于指导新型钯(II)类抗肿瘤药物的合成具有重要的参考价值.  相似文献   

14.
Copper complexes are promising anticancer agents widely studied to overcome tumor resistance to metal-based anticancer drugs. Nevertheless, copper complexes per se encounter drug resistance from time to time. Adenosine-5′-triphosphate (ATP)-responsive nanoparticles containing a copper complex CTND and B-cell lymphoma 2 (Bcl-2) small interfering RNA (siRNA) were constructed to cope with the resistance of cancer cells to the complex. CTND and siRNA can be released from the nanoparticles in cancer cells upon reacting with intracellular ATP. The resistance of B16F10 melanoma cells to CTND was terminated by silencing the cellular Bcl-2 gene via RNA interference, and the therapeutic efficacy was significantly enhanced. The nanoparticles triggered a cellular autophagy that amplified the apoptotic signals, thus revealing a novel mechanism for antagonizing the resistance of copper complexes. In view of the extensive association of Bcl-2 protein with cancer resistance to chemotherapeutics, this strategy may be universally applicable for overcoming the ubiquitous drug resistance to metallodrugs.

Bcl-2-related tumor resistance to anticancer drugs can be overcome by silencing the cellular Bcl-2 gene via RNA interference. The realization of the goal is exemplified by delivering Bcl-2 siRNA and a tumor-resistant Cu complex to cancer cells with an ATP-responsive nanocarrier.  相似文献   

15.
《Electrophoresis》2017,38(8):1201-1205
Electrophoretic mobility is a physical phenomenon defining the mobility of charged particles in a solution under applied electric field. As charged biological systems, living cells including both prokaryotes and eukaryotes have been assessed in terms of electrophoretic mobility to decipher their electrochemical structure. Moreover, determination of electrophoretic mobility of living cancer cells have promoted the advance exploration of the nature of the cancer cells and separation of cancer cells from normal ones under applied electric field. However, electrophoretic mobility of drug‐resistant cells has not yet been examined. In the present study, we determined the electrophoretic mobility of drug‐resistant cancer cell lines for both suspension and adherent cells and compared with those of drug‐sensitive counterparts. We showed that resistance to anticancer drugs alters the electrophoretic mobility in a permanent manner, even lasting without any exposure to anticancer agents for a long time period. We also studied the cellular morphologies of adherent cells where the cellular invaginations and protrusions were increased in drug‐resistant adherent cells, which could be direct cause of altered surface charge and electrophoretic mobility as a result. These findings could be helpful in terms of understanding the electrophysiological and physicochemical background of drug resistance in cancer cells and developing systems to separate drug‐sensitive cells from drug‐resistant ones.  相似文献   

16.
A possible way to avoid dose-limiting side effects of platinum anticancer drugs is to employ light to cause photochemical changes in nontoxic platinum prodrugs that release active antitumor agents. This strategy could be used in the treatment of localized cancers accessible to irradiation (e.g., bladder, lung, esophagus, and skin). We report here that nontoxic photolabile diam(m)ino platinum(IV) diazido complexes inhibit the growth of human bladder cancer cells upon irradiation with light, and are non-crossresistant to cisplatin. Their rate of photolysis closely parallels that of DNA platination, indicating that the photolysis products interact directly, and rapidly, with DNA. Photoactivation results in a dramatic shrinking of the cancer cells, loss of adhesion, packing of nuclear material, and eventual disintegration of their nuclei, indicating a different mechanism of action from cisplatin.  相似文献   

17.
We report toxic effects of a photoactivatable platinum(IV) complex conjugated with suberoyl‐bis‐hydroxamic acid in tumor cells. The conjugate exerts, after photoactivation, two functions: activity as both a platinum(II) anticancer drug and histone deacetylase (HDAC) inhibitor in cancer cells. This approach relies on the use of a PtIV pro‐drug, acting by two independent mechanisms of biological action in a cooperative manner, which can be selectively photoactivated to a cytotoxic species in and around a tumor, thereby increasing selectivity towards cancer cells. These results suggest that this strategy is a valuable route to design new platinum agents with higher efficacy for photodynamic anticancer chemotherapy.  相似文献   

18.
Breast cancer (BC) is one of the most common malignancies in women and often accompanied by inflammatory processes. Cyclooxygenase-2 (COX-2) plays a vital role in the progression of BC, correlating with the expression of programmed death-ligand 1 (PD-L1). Overexpression of PD-L1 contributes to the immune escape of cancer cells, and its blockade would stimulate anticancer immunity. Two multispecific platinum(IV) complexes DNP and NP were prepared using non-steroidal antiinflammatory drug naproxen (NPX) as axial ligand(s) to inhibit the BC cells. DNP exhibited high cytotoxicity and antiinflammatory properties superior over NP, cisplatin and NPX; moreover, it displayed potent antitumor activity and almost no general toxicity in mice bearing triple-negative breast cancer (TNBC). Mechanistic studies revealed that DNP could downregulate the expression of COX-2 and PD-L1 in vitro and vivo, inhibit the secretion of prostaglandin, reduce the expression of BC-associated protein BRD4 and phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2), and block the oncogene c-Myc in BC cells. These findings demonstrate that DNP is capable of intervening in inflammatory, immune, and metastatic processes of BC, thus presenting a new mechanism of action for anticancer platinum(IV) complexes. The multispecificity offers a special superiority for DNP to treat TNBC by combining chemotherapy and immunotherapy in one molecule.  相似文献   

19.
20.
Picoplatin is a sterically hindered mononuclear platinum drug undergoing clinical trials. The 2-methylpyridine ring provides steric hindrance to the drug, preventing attack from biological nucleophiles. BBR3464 is a trinuclear platinum drug which was recently in Phase II clinical trials, and is highly cytotoxic both in vitro and in vivo; it derives this activity through the flexible adducts it forms with DNA. In this work we sought to combine the properties of both drugs to synthesise a family of sterically hindered, dinuclear platinum complexes as potential anticancer agents. The bis-pyridyl-based ligands were synthesised through a peptide coupling reaction using diaminoalkanes of differing lengths (n = 2, 4 or 8) and 4-carboxypyridine or 2-methyl-4-carboxypyridine. The resultant dinuclear platinum complexes were synthesised by reacting two equivalents of transplatin or mono-aquated transplatin to each ligand, followed by purification by precipitation with acetone. The unprotected complexes react faster with 5'-guanosine monophosphate (drug to nucleotide ratio 1?:?2; t(1/2) = 2 h), glutathione (1?:?10, t(1/2) = 55 min) and human serum albumin (HSA) (1?:?1, t(1/2) = 24 h) compared to their hindered, protected equivalents (5'-guanosine monophosphate, t(1/2) = 3.5 h; glutathione = 1.7 h; HSA, t(1/2) = 110 h). The complexes were tested for in vitro cytotoxicity in the A2780 and A2780/cp70 ovarian cancer cell line. The unprotected platinum complexes were more cytotoxic than their protected derivatives, but none of the complexes were able to overcome resistance. The results provide important proof-of-concept for the development of a larger family of sterically hindered multinuclear-based platinum complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号