首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A new furostanol saponin, sisalasaponin C ( 1 ), and a new spirostanol saponin, sisalasaponin D ( 2 ), were isolated from the fresh leaves of Agave sisalana, along with three other known steroidal saponins and two stilbenes. Their structures were identified as (3β,5α,6α,22α,25R)‐3,26‐bis[(β‐D ‐glucopyrano‐ syl)oxy]‐22‐hydroxyfurostan‐6‐yl β‐D ‐glucopyranoside ( 1 ), (3β,5α,25R)‐12‐oxospirostan‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,6α,22α,25R)‐22‐methoxyfurostane‐3,6,26‐triyl tris‐β‐D ‐glucopyranoside, cantalasaponin‐1, polianthoside D, (E)‐ and (Z)‐2,3,4′,5‐tetrahydroxystilbene 2‐O‐β‐D ‐glucopyranosides. The last three known compounds were isolated from the fresh leaves of Agavaceae for the first time. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including 1D‐ and 2D‐NMR experiments, and chemical techniques.  相似文献   

2.
The revised structures of avenacosides A and B and a new sulfated steroidal saponin isolated from grains of Avena sativa L. were elucidated. Their structures and complete NMR assignments are based on 1D and 2D NMR studies and identified as nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (1), nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (2), and nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐6‐O‐sulfoglucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (3). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Twelve triterpene saponins were isolated by successive MPLC over silica gel from four species of Polygalaceae: From Polygala ruwenzoriensis, five new saponins 1 – 5 of which 1 – 4 as two pairs of (E)/(Z)‐isomers, together with the four known compounds tenuifoline, (E)‐ and (Z)‐senegasaponin b, (E)‐ and (Z)‐senegin II, and polygalasaponin XXVIII, from the genus Carpolobia, one new saponin 6 from C. alba and the known arilloside ( 11 ) from C. lutea, and another new triterpene glycoside 7 from Polygala arenaria. Their structures were established mainly by 600‐MHz 2D‐NMR techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, HMBC) as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐4‐O‐[(E)‐4‐methoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐[O‐β‐D ‐galactopyranosyl‐(1 → 4)‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl] ester ( 5 ), 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐O‐[β‐D ‐apiofuranosyl‐(1 → 3)]‐4‐O‐acetyl‐β‐D ‐fucopyranosyl} ester ( 6 ), and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐β‐D ‐galactopyranosyl‐(1 → 4)‐O‐[β‐D ‐glucopyranosyl‐(1 → 3)]‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐O‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl} ester ( 7 ) (presenegenin = (2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid).  相似文献   

4.
Five new steroidal glycosides were isolated from the roots of Balanites aegyptiaca, a widely used African medicinal plant. On the basis of spectroscopic and chemical evidence, their structures were determined as (3β,12α,14β,16β)‐12‐hydroxycholest‐5‐ene‐3,16‐diyl bis(β‐D ‐glucopyranoside) ( 1 ), (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 and 3 , resp.), and (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐spirost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 4 and 5 , resp.)  相似文献   

5.
Four new furostanol steroid saponins, borivilianosides A–D ( 1 – 4 , resp.), corresponding to (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 1 ), (3β,5α,22R,25R)‐ 26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 3 ), and (3β,5α,25R)‐26‐(β‐D ‐glucopyranosyloxy)furost‐20(22)‐en‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 4 ), together with the known tribuluside A and (3β,5α,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurostan‐3‐yl Oβ‐D ‐xylopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐galactopyranoside were isolated from the dried roots of Chlorophytum borivilianum Sant and Fern . Their structures were elucidated by 2D ‐NMR analyses (COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry.  相似文献   

6.
Three new steroidal saponins, (25R)‐ruscogenin‐3‐yl α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 1 ), diosgenin‐3‐yl 2‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 2 ), and pennogenin‐3‐yl 2‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→4)]‐β‐D ‐glucopyranoside ( 3 ) were isolated from the fibrous roots of Ophiopogon japonicus (Thunb .) Ker‐Gawl . Their structures were determined by spectroscopic methods including IR, HR‐ESI‐MS, and 1D‐ and 2D‐NMR. All of these three steroidal saponins exhibited weak cytotoxicities against Hela and Hep2 cell lines.  相似文献   

7.
Phytochemical analyses were carried out on the rhizomes of Clintonia udensis (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A ( 1 ), B ( 2 ), and C ( 3 ). On the basis of their spectroscopic data, including 2D‐NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1 – 3 were determined to be (1β,3β,23S,24S,25R)‐1,23,24‐trihydroxyspirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 1 ), (1β,3β,23S,24S)‐3,21,23,24‐tetrahydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ), and (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(6‐deoxy‐β‐D ‐gulopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

8.
Phytochemical investigation from the stems of Alibertia edulis led to the isolation and identification of a new iridoid 6β‐hydroxy‐7‐epigardoside methyl ester ( 1 ) and a new saponin 3βO‐[α‐L ‐rhamnopyranosyl‐(1→2)‐O‐β‐D ‐glucopyranosyl‐(1→2)‐O‐β‐D ‐glucopyranosyl]‐28‐O‐β‐D ‐glucopyranoside pomolate ( 2 ), along with three known compounds, shanzhiside methyl ester ( 3 ), ixoside ( 4 ), and 3,4,5‐trimethoxyphenyl 1‐Oβ‐D ‐apiofuranosyl‐(1→6)‐O‐β‐D ‐glucopyranoside ( 5 ). The structures of 1 and 2 were established on the basis of their spectroscopic data. Iridoid 1 and saponin 2 exhibited moderate inhibitory activities against Candida albicans and C. krusei in a dilution assay.  相似文献   

9.
The three new 3‐O‐methylquercetin glucosides 1 – 3 , together with three known congeners and 3‐O‐methylquercetin, were isolated from the fern Ophioglossum pedunculosum (quercetin=2‐(3,4‐dihydroxyphenyl)‐3,5,7‐trihydroxy‐4H‐1‐benzopyran‐4‐one). The new compounds were identified on the basis of spectroscopic analysis as 5′‐isoprenyl‐3‐O‐methylquercetin 4′,7‐di‐β‐D ‐glucopyranoside ( 1 ), 3‐O‐methylquercetin 4′‐β‐D ‐glucopyranoside 7‐[O‐β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] ( 2 ), and 3‐O‐methylquercetin 7‐[O‐β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranoside] ( 3 ). The effect of the isolated compounds on lipopolysaccharide (LPS)‐induced NO production was evaluated. The inhibitory activity of 3‐O‐methylquercetin derivatives decreased markedly with the increasing number of glucosyl groups in the structures.  相似文献   

10.
Three new furostanol glycosides, named ciliatasides A, B, and C ( 1 – 3 , resp.), have been isolated from the roots of Digitalis ciliata, along with two known furostanol glycosides. The structures of the new compounds were identified as (2α,3β,5α,14β,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxyfurost‐20(22)‐en‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 1 ), (2α,3β,5α,14β,22R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxy‐22‐methoxyfurost‐25(27)‐en‐3‐yl β‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), and (2α,3β,5α,14β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2,22‐dihydroxyfurostan‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 3 ).  相似文献   

11.
The two new polyoxygenated spirostanol bisdesmosides 1 and 2 and the new trisdesmoside 3 , named hellebosaponin A ( 1 ), B ( 2 ), and C ( 3 ), respectively, were isolated from the MeOH extract of the rhizomes of Helleborus orientalis. The structures of the new compounds were elucidated as (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl O‐β‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 1 ), (1β,3β,23S,24S)‐ 21‐(acetyloxy)‐24‐{[Oβ‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐ α‐L ‐arabinopyranoside ( 2 ), and (1β,3β,23S,24S)‐24‐[(β‐D ‐fucopyranosyl)oxy]‐21‐{[Oβ‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl]oxy}‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oβ‐D ‐apiofuranosyl‐(1→3)‐O‐(4‐O‐acetyl‐α‐L ‐rhamnopyranosyl)‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐α‐L ‐arabinopyranoside ( 3 ), respectively, on the basis of detailed spectroscopic studies and chemical evidence.  相似文献   

12.
Eight new acylated preatroxigenin saponins 1 – 8 were isolated as four inseparable mixtures of the trans‐ and cis‐4‐methoxycinnamoyl derivatives, atroximasaponins A1/A2 ( 1 / 2 ), B1/B2 ( 3 / 4 ), C1/C2 ( 5 / 6 ) and D1/D2 ( 7 / 8 ) from the roots of Atroxima congolana. These compounds are the first examples of triterpene saponins containing preatroxigenin (=(2β,3β,4α,22β)‐2,3,22,27‐tetrahydroxyolean‐12‐ene‐23,28‐dioic acid as aglycone. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and FAB‐MS as 3‐O(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 1 ) and its cis‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→ 2)‐O‐[O‐6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐ 4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 3 ) and its cis‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐6‐ O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 5 ) and its cis‐isomer 6 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl ester ( 7 ) and its cis‐isomer 8 .  相似文献   

13.
Two novel echinocystic acid (=(3β,16α)‐3,16‐dihydroxyolean‐12‐en‐28‐oic acid) glycosides, foetidissimosides C ( 1 ), and D ( 2 ), along with new cucurbitane glycosides, i.e., foetidissimosides E/F ( 3 / 4 ) as an 1 : 1 mixture of the (24R)/(24S) epimers, were obtained from the roots of Cucurbita foetidissima. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC), and by FAB‐MS. The new compounds were characterized as (3β,16α)‐28‐{[Oβ‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl]oxy}‐16‐hydroxy‐28‐oxoolean ‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 1 ), (3β,16α)‐16‐hydroxy‐28‐oxo‐28‐{{Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}olean‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 2 ), and (3β,9β,10α,11α,24R)‐ and (3β,9β,10α,11α,24S)‐25‐(β‐D ‐glucopyranosyloxy)‐9‐methyl‐19‐norlanost‐5‐en‐3‐yl 2‐Oβ‐D ‐glucopyranosyl‐β‐D ‐glucopyranoside ( 3 and 4 , resp.).  相似文献   

14.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

15.
The four new acylated triterpene saponins 1 – 4 , isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5 / 6 , the (Z)‐isomer libericoside C2 ( 5 ) being new, one new sucrose ester, atroximoside ( 7 ), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed‐phase silica gel. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(Z)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 5 ), and 3‐O‐[(Z)‐feruloyl]‐β‐D ‐fructofuranosyl α‐D ‐glucopyranoside ( 7 ). Compounds 1 – 6 and the known saponins 8 / 9 were evaluated against the human colon cancer cells HCT 116 and HT‐29 and showed moderate to weak cytotoxicity.  相似文献   

16.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Two new oleanane‐type triterpene saponins, afrocyclamins A and B ( 1 and 2 , resp.), were isolated from a MeOH extract of the roots of Cyclamen africanum Boiss . & Reuter , together with three known triterpenoid saponins, lysikokianoside, deglucocyclamin I, and its dicrotalic acid derivative. The structures were elucidated, on the basis of 1D‐ and 2D‐NMR experiments and mass spectrometry as (3β,20β)‐13,28‐epoxy‐16‐oxo‐3‐{Oβ‐D ‐xylopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}oxy}oleanan‐29‐al ( 1 ) and (3β,16α,20β)‐16,28,29‐trihydroxy‐olean‐12‐en‐3‐yl O‐4‐O‐(4‐carboxy‐3‐hydroxy‐3‐methyl‐1‐oxobutyl)‐β‐D ‐xylopyranosyl‐(1→2)‐Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranoside ( 2 ).  相似文献   

18.
Four new steroidal saponins, named disporosides A–D ( 1 – 4 ), corresponding to (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 1 ), (3β,25R)‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[6‐O‐hexadecanoyl‐β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐spirostan ( 2 ), (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 3 ), and (3β,22R,25R)‐26‐[(β‐D ‐glucopyranosyl)oxy]‐3‐[(β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐glucopyranosyl)oxy]‐5β‐furostan ( 4 ), have been isolated from the fresh rhizomes of Disporopsis pernyi, together with the three known compounds Ys‐I, agavoside B, and (3β,25R)‐3‐[(β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranosyl)oxy]‐5α‐spirostan‐12‐one. Their structures were elucidated by spectroscopic analyses, chemical transformations (acid hydrolysis), and comparison with literature data.  相似文献   

19.
Three new dammarane‐type triterpenoid saponins, 1 – 3 , were isolated and identified as (20S)‐20‐O‐[β‐D ‐xylopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl]dammar‐24‐ene‐3β,6α,12β, 20‐tetrol ( 1 ), (20S)‐6‐O‐[(E)‐but‐2‐enoyl‐(1→6)‐β‐D ‐glucopyranosyl]dammar‐24‐ene‐3β,6α,12β,20‐tetrol ( 2 ), and (20S)‐6‐O‐[β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl]dammar‐24‐ene‐3β,6α,12β,20‐tetrol ( 3 ) from the roots of Panax notoginseng (Burkill ) F.H.Chen (Araliaceae). Their structures were elucidated on the basis of spectroscopic analyses, including 1D‐ and 2D‐NMR techniques and HR‐ESI‐MS, as well as by acidic hydrolysis.  相似文献   

20.
The five new presenegenin glycosides 1 – 5 were isolated from Securidaca welwitschii, together with one known sucrose diester. Compounds 1 – 4 were obtained as pairs of inseparable (E)/(Z)‐isomers of a 3,4‐dimethoxycinnamoyl derivative, i.e., 1 / 2 and 3 / 4 . Their structures were elucidated mainly by 2D‐NMR techniques and mass spectrometry as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28{Oβ‐D ‐galactopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐3‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐[Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl] ester ( 5 ) (presenegenin=(2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号