首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Hu W  Xu Y  Liu F  Liu A  Guo Q 《Biomedical chromatography : BMC》2008,22(10):1108-1114
A sensitive, specific and rapid high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was described and validated for the quantification of ambroxol in human plasma using enalaprilat as the internal standard (IS). Chromatographic separation was performed on a Lichrospher CN column with a mobile phase of methanol and water (containing 0.1% formic acid) (70:30, v/v). The total run time was 5.0 min for each sample. The analytes was detected by mass spectrometry with electrospray ionization source in positive selected reaction monitoring mode. The precursor-fragment ion reaction for ambroxol was m/z 378.9 --> 263.8, and for IS was m/z 349.0 --> 205.9. The linearity was established over the concentration range of 1.56-400.00 ng/mL. The inter-day and the intra-day precisions were all within 10%. A simple protein precipitation with methanol was adopted for sample preparation. The extraction recoveries of ambroxol and IS were higher than 90.80%. The validated method was successfully applied in pharmacokinetic study after oral administration of 90 mg ambroxol to 24 healthy volunteers.  相似文献   

2.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive validated liquid chromatography-tandem mass spectrometric method (LC-MS/MS) for gabapentin (GB) in human plasma has been developed and applied to pharmacokinetic (PK) and bioequivalence (BE) studies in human. In a randomized crossover design with a 1-week period, each subject received a 300 mg GB capsule. The procedure involves a simple protein precipitation with acetonitrile and separated by LC with a Gemini C(18) column using acetonitrile-10 mm ammonium acetate (20:80, v/v, pH 3.2) as mobile phase. The GB and internal standard [(S)-(+)-alpha-aminocyclohexanepropionic acid hydrate] were analyzed using an LC-API 2000 MS/MS in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 172.0 --> 154.0 and m/z 172.0 --> 126.0 for GB and IS, respectively. The assay exhibited good linearity over a working range of 20-5000 ng/mL for GB in human plasma with a lower limit of quantitation of 20 ng/mL. No endogenous compounds were found to interfere with the analysis. The accuracy and precision were shown for concentrations over the standard ranges. This method was successfully applied for the PK and BE studies by analysis of blood samples taken up to 36 h after an oral dose of 300 mg of GB in 24 healthy volunteers.  相似文献   

4.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of ziprasidone (ZIP) in human plasma was developed. ZIP and N-methyl ziprasidone as internal standard (IS) were extracted from alkalinized plasma using tert- butyl methyl ether. Separation was performed isocratically on a C8 column with 90% acetonitrile containing 2 mmol/L ammonium acetate as a mobile phase with a total run time of 2.5 min. MS/MS transitions of m/z 413 --> 194 and m/z 427 --> 177 of the analyte and internal standard were used for quantification. Confirmatory ions of m/z 413 --> 177 and m/z 427 --> 180 were collected as well. The calibration curve based on peak-area ratio was linear up to at least 200 ng/mL with a detection limit of 0.1 ng/mL. The method showed satisfactory reproducibility with a coefficient of variation of less than 5%. The method was successfully applied to the analysis of ZIP in spiked human plasma.  相似文献   

5.
A simple and robust method for quantification of zolpidem in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS). Es-citalopram was used as an internal standard. Zolpidem and internal standard in plasma sample were extracted using solid-phase extraction cartridges (Oasis HLB, 1 cm3/30 mg). The samples were injected into a C8 reversed-phase column and the mobile phase used was acetonitrile-ammonium acetate (pH 4.6; 10 mm) (80:20, v/v) at a flow rate of 0.7 mL/min. Using MS/MS in the selected reaction-monitoring (SRM) mode, zolpidem and Es-citalopram were detected without any interference from human plasma matrix. Zolpidem produced a protonated precursor ion ([M+H]+) at m/z 308.1 and a corresponding product ion at m/z 235.1. The internal standard produced a protonated precursor ion ([M+H]+) at m/z 325.1 and a corresponding product ion at m/z 262.1. Detection of zolpidem in human plasma by the LC-ESI MS/MS method was accurate and precise with a quantification limit of 2.5 ng/mL. The proposed method was validated in the linear range 2.5-300 ng/mL. Reproducibility, recovery and stability of the method were evaluated. The method has been successfully applied to bioequivalence studies of zolpidem.  相似文献   

6.
A rapid, sensitive, and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method for the determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using sildenafil as an internal standard (IS) was developed and validated. Udenafil, DA-8164 and IS from a 100 microL aliquot of biological samples were extracted by protein precipitation using acetonitrile. Chromatographic separation was carried on an Acquity UPLC BEH C(18) column (50 x 2.1 mm, i.d., 1.7 microm) with an isocratic mobile phase consisting of acetonitrile and containing 0.1% formic acid (75:25, v/v) at flow rate of 0.4 mL/min, and total run time was within 1 min. Detection and quantification was performed by the mass spectrometer using multiple reaction-monitoring mode at m/z 517 --> 283 for udenafil, m/z 406 --> 364 for DA-8164 and m/z 475 --> 100 for IS. The assay was linear over a concentration range of 1-600 ng/mL with a lower limit of quantification of 1 ng/mL in both human plasma and urine. The coefficient of variation of this assay precision was less than 13.7%, and the accuracy exceeded 92.0%. This method was successfully applied for pharmacokinetic study after oral administration of udenafil 100 mg to healthy Korean male volunteers.  相似文献   

7.
A rapid, selective and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to determine lisinopril in human plasma. Sample pretreatment involved a one-step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on an Inertsil ODS-3 column (2.1 × 50 mm i.d., 3 μm) with mobile phase consisting of methanol-water (containing 0.2% formic acid; 55:45, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via an electrospray ionization source. Each plasma sample was chromatographed within 2.5 min. The linear calibration curves for lisinopril were obtained in the concentration range of 1.03-206 ng/mL (r(2) ≥ 0.99) with a lower limit of quantification of 1.03 ng/mL. The intra- and inter-day precisions (relative standard deviation) were not higher than 11%, and accuracy (relative error) was within ±6.8%, determined from quality control samples for lisinopril, which corresponded to the guidance of the Food and Drug Administration. The method described herein was fully validated and successfully applied to the pharmacokinetic study of lisinopril tablets in healthy male volunteers after oral administration.  相似文献   

8.
A rapid, simple and validated liquid chromatography coupled to tandem mass spectrometric method (LC-MS/MS) for topiramate analysis in human plasma has been applied to pharmacokinetic and bioequivalence studies in 24 healthy male Korean volunteers. The procedure involves a simple liquid extraction of topiramate and prednisone (internal standard) with acetonitrile and separation by HPLC equipped with a Capcell Pak C18 column using acetonitrile-0.1% triethylamine (80:20, v/v) as a mobile phase. Detection was carried out on an API 2000 MS system by multiple reactions monitoring mode. The ionization was optimized using ESI(-) and selectivity was achieved by MS/MS analysis, m/z 338.0 --> 77.5 and m/z 357.1 --> 327.2 for topiramate and prednisone, respectively. The method had a total run time of 2.5 min and showed good linearity over a working range of 20-5000 ng/mL in human plasma with a lower limit of quantification of 20 ng/mL. No metabolic compounds were found to interfere with the analysis. The inter-day and intra-day accuracy were in the ranges of 99.24-116.63 and 93.45-108.68%, respectively, and inter-day and intra-day precisions were below 6.24 and 5.25%, respectively. This method was successfully applied for pharmacokinetic and bioequivalence studies by analysis of blood samples taken up to 96 h after an oral administration of 100 mg of topiramate in 24 healthy Korean volunteers.  相似文献   

9.
A rapid and sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method has been developed to determine 1, 2-[bis(1,2-benzisoselenazolone-3(2H)-ketone)]-ethane (BBSKE), a novel antineoplastic agent, in rat plasma. The analytes were separated on a C18 column with a mobile phase of methanol-water (75:25, v/v) and detected using a triple-quadrupole mass spectrometer in positive mode with the selective reaction monitoring. The characteristic ion dissociation transitions were m/z 603.0 --> 448.9 for derivatized BBSKE and m/z 631.0 --> 476.8 for derivatized internal standard. The assay was linear over a range of 1-1000 ng/mL with a lower limit of quantification of 1 ng/mL. Intra- and inter-day precisions were less than 9.6 and 5.0%, respectively, and the accuracy ranged from -5.2 to 4.0%. The validated method was successfully applied to the characterization of pharmacokinetic profile of BBSKE after oral administration in rats. Cop  相似文献   

10.
7-Ethyl-10-hydroxycamptothecin (SN-38) is an active metabolite of Irinotecan (CPT-11), an anticancer pro-drug. To support clinical pharmacokinetic studies for liposome based formulation of SN-38 (LE-SN38) in cancer patients, a rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the quantification of total SN-38 in human plasma. Sample preparation was carried out by one-step protein precipitation using cold acetonitrile with 0.5% acetic acid (v/v). Camptothecin was used as an internal standard (IS). Chromatographic separation of SN-38 and IS was achieved using a Synergi Hydro-RP column (C(18), 50 x 2 mm, 4 micro m), with a gradient elution of acetonitrile and 0.1% acetic acid. After ionization in electrospray source (positive ions), the acquisition was performed in the multiple reactions monitoring mode. Quantitation was accomplished using the precursor-->product ion combinations of m/z 393.1-->349.2 for SN-38 and 349.1-->305.1 for IS. The quantification limit of 0.05 ng/mL was achieved by using much lower volume (0.2 mL) of plasma and in the presence of LE-SN38. The method was validated over the concentration range of 0.05-400 ng/mL. Accuracy was within +/-12% of nominal at all concentration levels. Inter-day and intra-day precisions expressed as percentage coefficient of variation (%CVs) for quality control (QC) samples were less than 14 and 5%, respectively.  相似文献   

11.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of pseudoephedrine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple-reaction monitoring mode using the respective [M + H](+) ions, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 2-1000 ng/mL pseudoephedrine in human plasma. The lower limit of quantification was 2 ng/mL with a relative standard deviation of less than 9% for pseudoephedrine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

12.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of zafirlukast (ZFK) with 500 microL human plasma using valdecoxib as an internal standard (IS). The API-4,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of ZFK and IS from human plasma with ethyl acetate. The resolution of peaks was achieved with 10 mm ammonium acetate (pH 6.4):acetonitrile (20:80, v/v) on a Hypersil BDS C(18) column. The total chromatographic run time was 2.0 min and the elution of ZFK and IS occurred at approximately 1.11 and 1.58 min, respectively. The MS/MS ion transitions monitored were 574.2 --> 462.1 for ZFK and 313.3 --> 118.1 for IS. The method was proved to be accurate and precise at a linearity range of 0.15-600 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 0.15 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 20 mg ZFK tablet.  相似文献   

13.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of doxofylline (DFL) with 300 microL human serum using imipramine as the internal standard (IS). The API-3,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved direct precipitation of DFL and IS from human serum with acetonitrile. The resolution of peaks was achieved with formic acid (pH 2.5): acetonitrile (10:90, v/v) on an Amazon C(18) column. The total chromatographic run time was 3.0 min and the elution of DFL and IS occurred at approximately 1.46 and 2.15 min, respectively. The MS/MS ion transitions monitored were 267.5 --> 181.1 for DFL and 281.1 --> 86.2 for IS. The method was proved to be accurate and precise at linearity range of 1.00-5,000 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 1.00 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of DFL tablet.  相似文献   

14.
The first liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for determination of acetylsalicylic acid (aspirin, ASA) and one of its major metabolites, salicylic acid (SA), in human plasma using simvastatin as an internal standard has been developed and validated. For ASA analysis, a plasma sample containing potassium fluoride was extracted using a mixture of ethyl acetate and diethyl ether in the presence of 0.5% formic acid. SA, a major metabolite of ASA, was extracted from plasma using protein precipitation with acetonitrile. The compounds were separated on a reversed-phase column with an isocratic mobile phase consisting of acetonitrile and water containing 0.1% formic acid (8:2, v/v). The ion transitions recorded in multiple reaction monitoring mode were m/z 179 --> 137, 137 --> 93 and 435 --> 319 for ASA, SA and IS, respectively. The coefficient of variation of the assay precision was less than 9.3%, and the accuracy exceeded 86.5%. The lower limits of quantification for ASA and SA were 5 and 50 ng/mL, respectively. The developed assay method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after single oral administration of Astrix (entero-coated pellet, 100 mg of aspirin) to 10 Korean healthy male volunteers.  相似文献   

15.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

16.
A simple, sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of atorvastatin and its active metabolites ortho-hydroxyatorvastatin and para-hydroxyatorvastatin in human plasma using rosuvastatin as internal standard (IS). Following simple liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 559/440 for atorvastatin, m/z 575/466 for ortho-hydroxyatorvastatin, m/z 575/440 for para-hydroxyatorvastatin and m/z 482/258 for the IS. The assay exhibited a linear dynamic range of 0.1-20 ng/mL for atorvastatin and its two metabolites in human plasma. The lower limit of quantification was 100 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of atorvastatin, ortho-hydroxyatorvastatin, para-hydroxyatorvastatin and the IS from spiked plasma samples were 54.2 +/- 3.2, 50.1 +/- 3.8, 65.2 +/- 3.6 and 71.7 +/- 2.7%, respectively. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

17.
A sensitive, simple, fast and rugged hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the determination of paroxetine was developed and validated over curve range 0.050-50 ng/mL using only 0.4 mL plasma. This is the first published LC-MS/MS method and the low limit of quantitation of this method is 10-fold lower than previously published methods. A simple liquid-liquid extraction method using methyl-tert butyl ether (MTBE) as the extraction solvent was used to extract paroxetine and the internal standard (IS) fentanyl-d(5) from plasma. The extract was evaporated to dryness, reconstituted and injected onto a silica column using a low aqueous-high organic mobile phase. The chromatographic run time was 2.0 min per injection, with retention times of 1.1 and 1.2 min for paroxetine and IS, respectively. The detection was by monitoring paroxetine at m/z 330 --> 192 and IS at m/z 342 --> 188, respectively. The inter-day precision and accuracy of the quality control (QC) samples were <5.0% relative standard deviation (RSD) and <2.9% relative error (RE). This method can be used for supporting therapeutical drug monitoring and pharmacokinetic or drug-drug interaction studies.  相似文献   

18.
We developed a method for determining pravastatin or pitavastatin, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in plasma using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Pravastatin, pitavastatin and the internal standard fluvastatin were extracted from plasma with solid-phase extraction columns and eluted with methanol. After drying the organic layer, the residue was reconstituted in mobile phase (acetonitrile:water, 90:10, v/v) and injected onto a reversed-phase C(18) column. The isocratic mobile phase was eluted at 0.2 mL/min. The ion transitions recorded in multiple reaction monitoring mode were m/z 423 --> 101, 420 --> 290 and 410 --> 348 for pravastatin, pitavastatin and fluvastatin, respectively. The coefficient of variation of the assay precision was less than 12.4%, the accuracy exceeded 89%. The limit of detection was 1 ng/mL for all analytes. This method was used to measure the plasma concentration of pitavastatin or pravastatin from healthy subjects after a single 4 mg oral dose of pitavastatin or 40 mg oral dose of pravastatin. This is a very simple, sensitive and accurate analytic method to determine the pharmacokinetic profiles of pitavastatin or pravastatiny.  相似文献   

19.
A sensitive and specific method was developed and validated for the determination of mitiglinide in human plasma using liquid chromatographic separation with electrospray ionization tandem mass spectrometric detection. Acidified plasma samples were extracted with ethyl acetate. The chromatographic separation was performed on an Agilent Zorbax Eclipse Plus C(18) column with a mobile phase of methanol-10 mm ammonium acetate solution at a flow rate of 0.3 mL/min. Analytes were detected with an Agilent 6410 Triple qudrupole mass spectrometer equipped with an electrospray ionization source in positive multiple reaction monitoring mode: m/z 316.2 (precursor ion) to 298.2 (product ion) for mitiglinide and m/z 318.2 (precursor ion) to 120.2 (product ion) for the internal standard. This method was validated over a linear range of 0.5-4000 ng/mL for mitiglinide in human plasma. The lower limit of quantification (LLOQ) was 0.5 ng/mL, while a relative standard deviation (RSD) was less than 3.9%. The intra- and inter-run precision (as RSD, %) obtained from three validation runs were all less than 15%. The validated method was successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

20.
The current study aims to develop a specific and sensitive LC-MS/MS method for determination of bis(7)-tacrine (B7T) in rat plasma. A 100 microL plasma sample was extracted with ethyl acetate. B7T and the internal standard (IS), pimozide, in the samples were then analyzed with LC-MS/MS in positive electrospray ionization condition. Chromatographic separation of B7T and IS was achieved in a C(18) reversed-phase HPLC column (150 x 2.1 mm i.d.) by isocratic elution with a mobile phase consisting of 0.05% formic acid in water and acetonitrile (1:1, v/v) at a flow rate of 0.35 mL/min. Multiple-reaction monitoring (MRM) mode was employed to measure the ion transitions: m/z 247 to 197 for B7T and m/z 462 to m/z 328 for IS, respectively. The method was linear over the studied ranges of 100-5000 and 10-100 ng/mL. The intra-day and inter-day variations of the analysis were less than 6.8% with standard errors less than 9.0%. The detection limit of B7T in rat plasma was 1 ng/mL. The developed method was successfully applied to the pharmacokinetic study of B7T after intravenous administration of 1 mg/kg B7T and further proved to be readily utilized for determination of B7T in rat plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号