首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou XP  Li D  Zheng SL  Zhang X  Wu T 《Inorganic chemistry》2006,45(18):7119-7125
The reactions of 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tpt) with copper(I) halides under solvothermal or traditional conditions yielded two polymeric Cu(I) complexes [Cu2I2(tpt)]n (1) and [Cu3I3(tpt)]n (2), one mixed-valence Cu(I)-Cu(II) complex [Cu4Cl2I4(tpt)2] (3), and two Cu(II) complexes [CuBr(bpca)] (4) and [CuI(bpca)] (5) (bpca = bis(2-pyridylcarbonyl)amine). Complex 1 is a zigzag chain with tpt in a bis-bipyridine-like coordination mode, whereas complex 2 with tpt chelating three Cu(I) cations is a ladderlike coordination polymer. Complex 3 is mixed-valence, with Cu(I) in a distorted tetrahedral geometry and Cu(II) in a distorted square pyramidal geometry, forming a ladderlike supramolecular chain. Complexes 4 and 5 are the products of in situ hydrolysis of tpt involving the oxidation of Cu(I). The synthesis and characterization of complex 1, 2, and 5 indicated that Cu(I) cannot promote the hydrolysis of tpt. The theoretical study shows that the main effect for hydrolysis of tpt is the electron-withdrawing effect of metal ions.  相似文献   

2.
The coordination chemistry of 2,5-dicarbothioamidopyrrole ligands, namely N2,N5-dibutyl-3,4-diphenyl-1H-pyrrole-2,5-bis(carbothioamide) and N2,N5,3,4-tetraphenyl-1H-pyrrole-2,5-bis(carbothioamide), has been investigated with Cu(II) metal centres by means of X-ray crystallography. This resulted in the formation of the expected planar S,N,S' coordinated complex for the former ligand and unexpected ring-closure reactions, with formation of benzothiazole sidearms, for the latter. Both Cu(II) and Cu(I), used in large excess, were found to favour the ring-closure reaction, although the structural characterisation of the resulting complexes contained only Cu(II) cations, with varying coordination geometries ranging from square planar and square-based pyramidal to tetrahedral. By repeating the reaction using a slight excess of Cu(II) (2?:?1) two more different structures were obtained where the metal was coordinated to the original ligand, N2,N5,3,4-tetraphenyl-1H-pyrrole-2,5-bis(carbothioamide), or to the mixed ligand where only one of the thioamide substituents had converted to a benzothiazole. The essential role of Cu for the ring closure reaction was also established by comparing its complex with structural features of the analogous Co(II) complex, the latter revealing no ring closure to give benzothiazole substituents and co-crystallisation of a mixed Co(II)/Co(III) complex. Finally, the structure and photophysical properties of the corresponding 3,4-diphenyl-2,5-bis(benzothiozol-5-yl)-pyrrole ligand, obtained via treatment of the thioamide with K(3)[Fe(CN)(6)], were also investigated revealing a blue-centered emission.  相似文献   

3.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

4.
We investigated the coordination self-assembly and metalation reaction of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin (2HTPyP) on a Au(111) surface by means of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. 2HTPyP was found to interact with Cu through both the peripheral pyridyl groups and the porphyrin core. Pairs of pyridyl groups from neighboring molecules coordinate Cu(0) atoms, which leads to the formation of a supramolecular metal-organic coordination network. The network formation occurs at room temperature; annealing at 450 K enhances the process. The interaction of Cu with the porphyrin core is more complex. At room temperature, formation of an initial complex Cu(0)-2HTPyP is observed. Annealing at 450 K activates an intramolecular redox reaction, by which the coordinated Cu(0) is oxidized to Cu(II) and the complex Cu(II)TPyP is formed. The coordination network consists then of Cu(II) complexes linked by Cu(0) atoms; that is, it represents a mixed-valence two-dimensional coordination network consisting of an ordered array of Cu(II) and Cu(0) centers. Above 520 K, the network degrades and the Cu atoms in the linking positions diffuse into the substrate, while the Cu(II)TPyP complexes form a close-packed structure that is stabilized by weak intermolecular interactions. Density functional theory investigations show that the reaction with Cu(0) proceeds via formation of an initial complex between metal atom and porphyrin followed by formation of Cu(II) porphyrin within the course of the reaction. The activation barrier of the rate limiting step was found to be 24-37 kcal mol(-1) depending on the method used. In addition, linear coordination of a Cu atom by two CuTPyP molecules is favorable according to gas-phase calculations.  相似文献   

5.
Due in large part to the lack of crystal structures of the amyloid-beta (Abeta) peptide and its complexes with Cu(II), Fe(II), and Zn(II), characterization of the metal-Abeta complex has been difficult. In this work, we investigated the complexation of Cu(II) by Abeta through tandem use of fluorescence and electron paramagnetic resonance (EPR) spectroscopies. EPR experiments indicate that Cu(II) bound to Abeta can be reduced to Cu(I) using sodium borohydride and that both Abeta-Cu(II) and Abeta-Cu(I) are chemically stable. Upon reduction of Cu(II) to Cu(I), the Abeta fluorescence, commonly reported to be quenched upon Abeta-Cu(II) complex formation, can be regenerated. The absence of the characteristic tyrosinate peak in the absorption spectra of Abeta-Cu(II) complexes provides evidence that the sole tyrosine residue in Abeta is not one of the four equatorial ligands bound to Cu(II), but remains close to the metal center, and its fluorescence is sensitive to the copper oxidation state and perturbations in the coordination sphere. Further analysis of the quenching and Cu(II) binding behaviors at different Cu(II) concentrations and in the presence of the competing ligand glycine offers evidence supporting the operation of two binding regimes which demonstrate different levels of fluorescence recovery upon addition of the reducing agent. We provide results that suggest the fluorescence quenching is likely caused by charge transfer processes. Thus, by using tyrosine to probe the coordination site, fluorescence spectroscopy provides valuable mechanistic insights into the oxidation state of copper ions bound to Abeta, the binding heterogeneity, and the influence of solution conditions on complex formation.  相似文献   

6.
The valences of metal ions were found to play key roles in controlling the formation and structures of discrete coordination architectures in a copper and disk-shaped hexa-monodentate ligand system. When Cu(I) and Cu(II) ions react with a polydentate ligand HPDQ, a hexanuclear "double-decker" like discrete "LM(3)M(3)L" coordination architecture (CuI)(6)(HPDQ)(2)(CHCl(3))(8) (complex 1), and a "LM(3)L + LM(3)" composite structure complex (Cu(NO(3))(2))(6)(HPDQ)(3) (complex 2) are formed, respectively.  相似文献   

7.
The coordination ability of the electroactive TTF-based chelating ligand 5,5'-bis(4,5-bis(thiomethyl)-4'-carbamoyltetrathiafulvalene)-2,2'-bipyridine (L) has been tested with Cu(I) and Cu(II) centres. [(L)2Cu(I)](PF6), [(L)2Cu(II)](OTf)2 and [(L)Cu(II)(DMF)3](OTf)2 have been synthesized. A single-crystal X-ray analysis was performed on [(L)Cu(II)(DMF)3](OTf)2, showing a distorted octahedral geometry around the Cu(II) centre, and the formation of dimeric units in the solid state through weak coordination in apical position of an amide oxygen atom from a neighbouring complex. Magnetic data show that the paramagnetic metallic centres are isolated, in agreement with the solid-state structure. Electrochemical measurements were performed on the three complexes and in all cases the Cu(I)/Cu(II) and TTF/TTF+*/TTF2+ redox processes were observed.  相似文献   

8.
The coordination chemistry of the Schiff base polypyrrolic octaaza macrocycle 1 toward late first-row transition metals was investigated. Binuclear complexes with the divalent cations Ni(II), Cu(II), and Zn(II) and with the monovalent cation Cu(I) were prepared and characterized. Air oxidation of the Cu(I) ions in the latter complex to their divalent oxidation state resulted in a change in the coordination mode relative to the macrocycle.  相似文献   

9.
The dinucleating ligand 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (H-BPMP) has been used to synthesize the three dinuclear Cu(II) complexes [Cu2(BPMP)(OH)][ClO4](2).0.5C4H8O (1), [Cu2(BPMP)(H2O)2](ClO4)(3).4H2O (2), and [Cu2(H-BPMP)][(ClO4)4].2CH3CN (3). X-ray diffraction studies reveal that 1 is a mu-hydroxo, mu-phenoxo complex, 2 a diaqua, mu-phenoxo complex, and 3 a binuclear complex with Cu-Cu distances of 2.96, 4.32, and 6.92 A, respectively. Magnetization measurements reveal that 1 is moderately antiferromagnetically coupled while 2 and 3 are essentially uncoupled. The electronic spectra in acetonitrile or in water solutions give results in accordance with the solid-state structures. 1 is EPR-silent, in agreement with the antiferromagnetic coupling between the two copper atoms. The X-band spectrum of powdered 2 is consistent with a tetragonally elongated square pyramid geometry around the Cu(II) ions, in accordance with the solid-state structure, while the spectrum in frozen solution suggests a change in the coordination geometry. The EPR spectra of 3 corroborate the solid-state and UV-visible studies. The 1H NMR spectra also lead to observations in accordance with the conclusions from other spectroscopies. The electrochemical behavior of 1 and 2 in acetonitrile or in water solutions shows that the first reduction (Cu(II)Cu(II)-Cu(II)Cu(I) redox couple) is reversible and the second (formation of Cu(I)Cu(I) irreversible. In water, 1 and 2 are reversibly interconverted upon acid/base titration (pK 4.95). In basic medium a new species, 4, is reversibly formed (pK 12.0), identified as the bishydroxo complex. Only 1 exhibits catecholase activity (oxidation of 3,5-di-tert-butylcatechol to the corresponding quinone, vmax = 1.1 x 10(-6) M-1 s-1 and KM = 1.49 mM). The results indicate that the pH dependence of the catalytic abilities of the complexes is related to changes in the coordination sphere of the metal centers.  相似文献   

10.
The complex formation of Co(II), Ni(II), Zn(II) with aminopyrophthalone was studied by means of electronic, IR, EPR and 1H-NMR spectroscopy. It was established that with Co(II) and Ni(II) two isomeric complexes are formed in contrast to Zn(II) and Cu(II) complex formation. On the basis of the spectral data obtained the coordination mode and structure of the complex species are assumed.  相似文献   

11.
We report the exceptional reactivity towards dioxygen of a nanostructured organic-inorganic hybrid material due to the confinement of copper cyclam within a silica matrix. The key step is the metalation reaction of the ligand, which can occur before or after xerogel formation through the sol-gel process. The incorporation of a Cu(II) center into the material after xerogel formation leads to a bridged Cu(I)/Cu(II) mixed-valence dinuclear species. This complex exhibits a very high affinity towards dioxygen, attributable to auto-organization of the active species in the solid. The remarkable properties of these copper complexes in the silica matrix demonstrate a high cooperative effect for O(2) adsorption; this is induced by close confinement of the two copper ions leading to end-on mu-eta(1):eta(1)-peroxodicopper(II) complexes. The anisotropic packing of the tetraazamacrocycle in a lamellar structure induces an exceptional reactivity of these copper complexes. We show for the first time that the organic-inorganic environment of copper complexes in a silica matrix fully model the protecting role of protein in metalloenzymes. For the first time an oxygenated dicopper(II) complex can be isolated in a stable form at room temperature, and the reduced Cu(2) (I,I) species can be regenerated after several adsorption-desorption cycles. These data also demonstrate that the coordination scheme and reactivity of the copper cyclams within the solid are quite different from that observed in solution.  相似文献   

12.
Density functional theory using the B3LYP hybrid functional has been employed to study the formation of [Cu(II)(TPA(H))(O2-)]+ and [Cu(II)(TPA(MeO))(O2-)]+ (TPA = tris(2-pyridylmethyl)amine) in two different solvents, THF and EtCN. The thermodynamics of solvent coordination as well as that of the overall reactions with O2 has been computed. The formations of [Cu(II)(TPA(H))(O2-)]+ in THF and of [Cu(II)(TPA(MeO))(O2-)]+ in both THF and EtCN are found to be initiated from the [Cu(I)(TPA(R))]+ species, that is, the Cu complex possessing an empty coordination site. In contrast, the formation of [Cu(II)(TPA(H))(O2-)]+ in EtCN is found to be initiated from the [Cu(I)(TPA(H))(EtCN)]+ species, that is, one solvent molecule being coordinated to Cu(I). In general, good agreement is found between theoretical and experimental results. The high accuracy of the B3LYP functional in reproducing experimental thermodynamic data for the present type of transition metal complexes is demonstrated by the fact that the differences between measured and computed thermodynamic parameters (DeltaG degree, DeltaH degrees , and -TDeltaS degree, in most cases are less than 2.0 kcal mol(-1). An attempt was made to investigate the kinetics of the formation of [Cu(II)(TPA(H))(O2-)]+ in THF and EtCN. Computed free energies of activation, DeltaG, are in good agreement with experimental results. However, an analysis of the partitioning of the free energy barriers in enthalpic and entropic contributions indicates that the computationally studied reaction pathway might differ from the one observed experimentally.  相似文献   

13.
The synthesis and characterization of a mononuclear nickel(II) complex [Ni(L(2))](ClO(4))(2) (1) and an analogous mononuclear copper(II) complex [Cu(L(2))](ClO(4))(2) (2) of a 15-membered azamacrocycle (L(2) = 3-(2-pyridyl)-6,8,8,13,13,15-hexamethyl-1,2,4,5,9,12-hexaazacyclopentadeca-5,15-diene) are reported. The macrocyclic ligand is formed during the reaction of 4,4,9,9-tetramethyl-5,8-diazadodecane-2,11-dione dihydrazone (L(1)) with pyridine-2-aldehyde (PyCHO) templated by metal ions. The X-ray crystal structure of 1 exhibits a distorted square-pyramidal coordination geometry, where the metal ion sits in the macrocyclic cavity and the pendant pyridine group of L(2) occupies the axial position. While 1 is stable in the presence of an excess of PyCHO, 2 reacts further with copper(II) salt and PyCHO to form a mononuclear copper(I) complex, [Cu(H(2)L(3))](ClO(4))(3) (3). The structure of the complex cation of 3 reveals a distorted tetrahedral coordination geometry at the copper center with a pseudo 2-fold screw axis. A two-dimensional (2D) polymeric copper(II) complex, {[Cu(2)(L(4))(2)](ClO(4))(2)}(n) (4) is obtained by reacting complex 2 (or [Ni(L(1))](ClO(4))(2)) with copper(II) perchlorate and pyridine-2-aldehyde in a methanol-water solvent mixture. Complex 4 is also obtained by treating 3 with copper(II) perchlorate and pyridine-2-aldehyde in the presence of a base. The X-ray structural analysis of 4 confirms the formation of a pyrazolate bridged dimeric copper(II) complex. The extended structure in the solid state of 4 revealed the formation of a 2D coordination polymer with the dimeric core as the repeating unit. The ligand (HL(4)) in 4 is a 3,4,5-trisubstituted pyrazole ring formed in situ via C-C bond formation and represents an unprecedented transformation reaction.  相似文献   

14.
The syntheses and structural details of tetraisopropoxyaluminates and tetra-tert-butoxyaluminates of nickel(II), copper(I), and copper(II) are reported. Within the nickel series, either Ni[Al(OiPr)4]2.2HOiPr, with nickel(II) in a distorted octahedral oxygen environment, or Ni[Al(OiPr)4]2.py, with nickel(II) in a square-pyramidal O4N coordination sphere, or Ni[(iPrO)(tBuO)3Al]2, with Ni(II) in a quasi-tetrahedral oxygen coordination, has been obtained. Another isolated complex is Ni[(iPrO)3AlOAl(OiPr)3].3py (with nickel(II) being sixfold-coordinated), which may also be described as a "NiO" species trapped by two Al(OiPr)3 Lewis acid-base systems stabilized at nickel by three pyridine donors. Copper(I) compounds have been isolated in three forms: [(iPrO)4Al]Cu.2py, [(tBuO)4Al]Cu.2py, and Cu2[(tBuO)4Al]2. In all of these compounds, the aluminate moiety behaves as a bidentate unit, creating a tetrahedrally distorted N2O2 copper environment in the pyridine adducts. In the base-free copper(I) tert-butoxyaluminate, a dicopper dumbbell [Cu-Cu 2.687(1) A] is present with two oxygen contacts on each of the copper atoms. Copper(II) alkoxyaluminates have been characterized either as Cu[(tBuO)4Al]2, {Cu(iPrO)[(iPrO)4Al]}2, and Cu[(tBuO)3(iPrO)Al]2 (copper being tetracoordinated by oxygen) or as [(iPrO)4Al]2Cu.py (pentacoordinated copper similar to the nickel derivative). Finally, a copper(II) hydroxyaluminate has been isolated, displaying pentacoordinate copper (O4N coordination sphere) by dimerization, with the formula {[(tBuO)4Al]Cu(OH).py}2. The formation of all of these isolated products is not always straightforward because some of these compounds in solution are subject to decomposition or are involved in equilibria. Besides NMR [copper(I) compounds], UV absorptions and magnetic moments are used to characterize the compounds.  相似文献   

15.
Sitting, coordination, and properties of Cu(I) cations in zeolite faujasite are investigated using a combined quantum mechanics-interatomic potential function method. The coordination of Cu(I) ions depends on their location within the zeolite lattice. Cu(I) located inside the hexagonal prisms (site I') and in the plane of six-membered aluminosilicate rings on the walls of sodalite units (site II) is threefold coordinated, whereas Cu(I) located in the supercages (site III) is twofold coordinated. In agreement with available experimental data Cu(I) appears to be more strongly bound in sites I' and II than in site III. The binding energy of site II Cu(I) ions increases with the number of Al atoms, but only closest Al atoms have a substantial influence. The CO molecule binds more strongly onto sites with weaker bound cations and lower coordination. We assign the two CO stretching IR bands observed for Cu(I)-Y zeolites to sites II with one Al (2157-2161 cm(-1)) and two Al atoms (2140-2148 cm(-1)) in the six-membered aluminosilicate ring. For Cu(I)-X we tentatively assign the high frequency band to site III (2156-2168 cm(-1)) and the low-frequency band to site II with three Al atoms in the six-membered ring (2136-2138 cm(-1)).  相似文献   

16.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

17.
Transition metal-mediated templating and self-assembly have shown powerful potentials for the synthesis of interlocked molecules. These two strategies were combined in designing and preparing a new type of coordination catenanes incorporating Cu(I) and Pd(II) metal centers. The ligand designed here contains a phenanthroline core and pyridine sidearms (compound 1). Using this phenanthroline-pyridine conjugated ligand, two approaches were examined, which were shown to be surprisingly efficient for the catenane synthesis: the entwining route (entwining of two ligands around Cu(I) followed by Pd(II) clipping) and the threading approach (Cu(I)-templated threading of a cyclic ligand on an acyclic ligand followed by the Pd(II) clipping of the second ring). In the former method, stepwise treatment of 1 with Cu(CH(3)CN)(4)PF(6) (templating center) and enPd(NO(3))(2) (assembling center) gives rise to the quantitative formation of CuPd(2) catenane 18. In the latter method, Cu(I) templates the threading of phenanthroline-containing macrocycle 2 on ligand 1, which is followed by Pd(II) clipping to give hetero catenane 20. In both approaches, the formation of catenanes is convincing thanks to the strong templating effect of Cu(I), while the ring closure steps are efficiently furnished by Pd(II)-directed self-assembly.  相似文献   

18.
The air-sensitive bis(micro-iodo)dicopper(I) complex 1 supported by [N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N,N-di-(2-pyridylmethyl)]amine (L) has been prepared by treating copper(I) iodide with L in anhydrous THF. Compound 1 crystallizes as a dimer in space group C2/c. Each copper(I) center has distorted tetrahedral N2I2 coordination geometry with Cu-N(pyridyl) distances 2.061(3) and 2.063(3) A, Cu-I distances 2.6162(5) and 2.7817(5) and a Cu...Cu distance of 2.9086(8) A. Complex 1 is rapidly oxidized by dioxygen in CH2Cl2 with a 1 : 1 stoichiometry giving the bis(micro-iodo)peroxodicopper(II) complex [Cu(L)(micro-I)]2O2 (2). The reaction of 1 with dioxygen has been characterized by UV-vis, mass spectrometry, EPR and Cu K-edge X-ray absorption spectroscopy at low temperature (193 K) and above. The mass spectrometry and low temperature EPR measurements suggested an equilibrium between the bis(micro-iodo)peroxodicopper(II) complex 2 and its dimer, namely, the tetranuclear (peroxodicopper(II))2 complex [Cu(L)(micro-I)]4O4 (2'). Complex 2 undergoes an effective oxo-transfer reaction converting PPh3 into O=PPh3 under anaerobic conditions. At sufficiently high concentration of PPh3, the oxygen atom transfer from 2 to PPh3 was followed by the formation of [Cu(PPh3)3I]. The dioxygen reactivity of 1 was compared with that known for other halo(amine)copper(I) dimers.  相似文献   

19.
Interactions of the CO and NO molecules with the Cu(II) and Cu(I) isolated sites on the amorphous silica surface are investigated by means of density functional theory (DFT) methods within the finite cluster model approach. The clusters of silica of increasing nT size (T = Si) are used, with n from 2 to 6. The Cu(II) sites are characterized by calculated g-tensors and hyperfine coupling constants (HFCCs) and compared with experiment. On this basis, the three-coordinated complexes are the most plausible. Due to the charge transfer from the silica "ligand", the metal charge shrinks and the spin density is distributed over silanol and siloxy groups up to 50%. The reduced sites are exclusively two-coordinated. Strong interaction of CO with Cu(I)-nT sites (31-39 kcal/mol) gives rise to the formation of carbonyl adducts with planar coordination around copper. The population of the ligand pi system shifts downward the stretching frequency in agreement with experiment. Reaction with a second CO molecule gives a geminal dicarbonyl of very uniform structure independent of the site. Carbonyl complexes with Cu(II) are less stable and of tetrahedral coordination of the metal. Accumulation of the positive charge on the complex along with sigma overlap with d orbitals locates the calculated CO stretching frequency above free molecule value. NO molecule is preferably bound to the Cu(II)-nT sites, forming a tetrahedral complex with tilted adsorbate and NO stretching frequency blue-shifted with respect to the free molecule value. The full set of electron paramagnetic resonance (EPR) parameters and vibrational frequencies for the copper(I) mononitrosyl, {CuNO}(11), though not observed experimentally, are predicted and compared to the same magnetophore inside the ZSM-5 zeolite. The interaction energies show that in the CO/NO reaction mixture adsorption is selective and allows discrimination between Cu(I) and Cu(II) sites. However, for the Cu(I) complex, formation of mixed-ligand structures of the {Cu(CO)(NO)}(11) type is possible.  相似文献   

20.
A Calix[6]arene scaffold was functionalized to provide a tridentate binding site at the small rim and three bidentate chelate sites at the large rim of the cone to generate a heteropolytopic ligand. Its complexation to one equivalent of Zn(II) at the small rim yields a funnel complex displaying both host-guest properties and preorganization of the three chelate groups at the large rim. These two aspects allowed the full control of the binding events to regioselectively form dinuclear Zn(II) and heteropolynuclear Zn(II)/Cu(I) complexes. The heteropolynuclear systems all rely on the host-guest relationship thanks to the induced-fit behavior of the calix cavity. With the short guest MeCN, the large rim is preorganized into a trigonal tris-triazole core and accommodates a single Cu(I) ion. A long guest breaks this spatial arrangement, and three Cu(I) ions can then be bound at the tris-bidentate triazole-dimethylamine site at the large rim. In a noncoordinating solvent however, the tetranuclear complex is submitted to scrambling and the addition of exogenous π-acceptor ligands is required to control the binding of Cu(I) in a well-defined environment. Hindrance selectivity was then induced by the accessibility at the small rim site. Indeed, while CO can stabilize Cu(I) at both coordination sites, PPh(3) cannot fit into the cavity and forces Cu(I) to relocate at the large rim. The resulting well-defined symmetrical tetranuclear complex thus arises from the quite remarkable selective supramolecular assembly of nine partners (1 Zn(II), 3 Cu(I), 1 calixarene, 1 guest alkylamine, 3 PPh(3)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号