首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Activity-guided fractionation of the ethanolic extract of the leaves of the Polyalthia longifolia var. pendula led to the identification of quercetin (1), quercetin-3-O-β-glucopyranoside (2), kaempferol-3-O-α-rhamnopyranosyl-(1 → 6)-β-galactopyranoside (3), kaempferol-3-O-α-rhamnopyranosyl-(1 → 6)-β-glucopyranoside (4), rutin (5) and allantoin (6) as the active constituents from the butanol fraction. Compounds 2-4 are reported for the first time from this natural source. Structures of the compounds were confirmed on the basis of their 1D and 2D NMR coupled with other spectroscopic methods. All the isolated compounds and the fractions were evaluated for their antioxidant potential using the TEAC assays and it was found that the activity of the active fraction was due to quercetin (1) and its glycosides (2 and 5), with TEAC values of 4.10, 1.91 and 2.38 mM, respectively, while the kaempferol glycosides were found to be inactive. This is the first study on the antioxidant activity of this plant species.  相似文献   

2.
Two new acylated flavonoid glycosides have been isolated from the leaves of Quercus dentata Thunb. On the basis of chemical and spectral data, the structures of the compounds have been elucidated as kaempferol 3-O-(2", 4"-diacetyl-3"-cis-p-coumaroyl-6"-trans-p-coumaroyl)-beta-D-glucopyranoside (1), and kaempferol 3-O-(2"-trans-p-coumaroyl-3", 4"-diacetyl-6"-cisp-coumaroyl)-beta-D-glucopyranoside (2).  相似文献   

3.
Six new acylated cyanidin glycosides, cyanidin 3-O-beta-(2'-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-galactopyranoside (1), cyanidin 3-O-beta-(2'-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6'-malonylgalactopyranoside) (2), cyanidin 3-O-beta-(2'-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6'-succinylgalactopyranoside) (3), cyanidin 3-O-beta-(2'-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-galactopyranoside-3'- O-beta-glucuronopyranoside (4), cyanidin 3-O-beta-(2'-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6'-malonylgalactopyranoside)-3'-O-beta-glucuronopyranoside (5), and cyanidin 3-O-beta-(2'-E-feruloylglucopyranosyl)-(1 --> 2)-O-beta-(6'-malonylgalactoside)-3' -O-beta-glucuronopyranoside (6), were isolated from the red flowers of two Clematis cultivars, 'Niobe'and 'Madame Julia Correvon'. The chemical structures of the isolated anthocyanins were determined by UV, LC-MS, HPLC, TLC, characterization of hydrolysates, and 1H and 13C NMR spectroscopy, including H-H COSY, C-H COSY, HMBC, HMQC and NOESY. The last three anthocyanins were widely distributed in 37 red flower Clematis cultivars. On the other hand, the first three compounds were found only in two cultivars. Five known flavonol glycosides, kaempferol 3-O-glucoside, kaempferol 3-O-rutinoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside and quercetin 3-O-rutinoside, were isolated from the flowers of'Madame Julia Correvon'.  相似文献   

4.
Chromatographic studies on the EtOAc soluble portion of the MeOH extract of Geranium lasiopus led to the isolation of eight flavonoids (kaempferol (1), quercetin (2), quercetin 3-O-β-glucopyranoside (3), quercetin 3-O-β-galactopyranoside (4), kaempferol 3-O-α-rhamnopyranosyl-(1?→?6)-β-glucopyranoside (5), quercetin 3-O-α-rhamnopyranosyl-(1?→?6)-β-glucopyranoside (6), kaempferol 3-O-α-rhamnopyranosyl-(1?→?2)-β-glucopyranoside (7) and quercetin 3-O-α-rhamnopyranosyl-(1?→?2)-β-glucopyranoside (8)), two simple phenolic compounds (gallic acid (9) and its methyl ester (10)) and a hydrolysable tannin (pusilagin (11)). The structures of the compounds were elucidated by 1- and 2-dimensional NMR techniques ((1)H, (13)C, COSY, HMBC, HMQC) and ESI-TOF-MS spectrometry. Inhibitory effects on H(2)O(2)-induced lipid peroxidation in human red blood cells of the different extracts of G. lasiopus, as well as isolated compounds, were investigated. All tested compounds showed comparable or higher activity than that of ascorbic acid and trolox.  相似文献   

5.
The flowers and leaves of Trifolium repens L. (Fabaceae) were subjected to phytochemical investigation in order to identify their major chemical constituents and to evaluate in?vitro antioxidant activity of the isolated compounds against DPPH˙. A total of 12 flavonoids, pterocarpan and methyl caffeate were isolated, then characterised by UV, MS, NMR spectroscopy and identified as quercetin and kaempferol 3-O-(6″-α-rhamnopyranosyl-2″-β-xylopyranosyl)-β-galactopyranosides (1, 2), kaempferol 3-O-(2″,6″-α-dirhamnopyranosyl)-β-galactopyranoside, mauritianin (3), quercetin and kaempferol 3-O-(2″-β-xylopyranosyl)-β-galactopyranosides (4, 5), kaempferol and quercetin 3-O-β-(6″-O-acetyl)-galactopyranosides (6, 7), trifolin (8), hyperoside (9), myricetin 3-O-β-galactopyranoside (10), quercetin (11), ononin (12), medicarpin 3-O-β-glucopyranoside (13) and methyl caffeate (14). Mauritianin, ononin, pterocarpan and methyl caffeate have been reported in this plant for the first time. The compounds 4, 7, 9, 10, and 11 were tested for their antioxidant effect against DPPH˙. All studied compounds were found to have potent activity, but the most effective in the test were compounds 9, 10 and 11 (EC(50) values in the range 7.51-9.52?μM).  相似文献   

6.
The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.  相似文献   

7.
Twelve compounds were isolated from Winged Sumac (Rhus copallinum) fruit and their structures were elucidated on the basis of NMR and mass spectral data. The isolates included a new galloyl derivative, (R)-galloyl malic acid dimethyl ester (1), and eleven known compounds, gallic acid (2), methyl gallate (3), glucogallin (4), methyl m-digallate (5), methyl p-digallate (6), quercetin (7), myricetin (8), rhamnazin (9), kaempferol (10), betulinic acid (11), and oleanolic acid (12). All of the compounds were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, Caco-2) and nontumorigenic (CCD18-Co) cell lines.  相似文献   

8.
Five new compounds viz kaempferol 3-O-(4″-galloyl)-β-d-glucopyranosyl-(1‴→6″)-O-β-d-glucopyranoside (1), kaempferol 3-O-β-d-mannuronopyranoside (2), kaempferol 3-O-β-d-mannopyranoside (3), quercetin 3-O-β-d-mannuronopyranoside (4), 2, 3 (S)- hexahydroxydiphenoyl]-d-glucose (5) along with fifteen known compounds were isolated from 80% aqueous methanol extract (AME) of C. viminalis. AME and compounds exerted similar or better antioxidant activity to ascorbic acid using DPPH, O2, and NO inhibition methods. In addition, compounds 16, 4, and 7 showed cytotoxic activity against MCF-7 cell lines while 3, 7 and 16 exhibited strong activity against HepG2. An in silico analysis using molecular docking for polyphenolic compounds 2, 3, 7, 16 and 17 against human stable 5-LOX was performed and compared to that of ascorbic acid and quercetin. The binding mode as well as the enzyme-inhibitor interactions were evaluated. All compounds occupied the 5-LOX active site and showed binding affinity greater than ascorbic acid or quercetin. The data herein suggest that AME, a source of polyphenols, could be used against oxidative-stress-related disorders.  相似文献   

9.
10.
Five flavonol glycosides characterised as kaempferide 3-O-(2',3'-diacetylglucoside), kaempferide 3-O-(2'-O-galloylrhamnoside), kaempferide 3-O-(2'-O-galloylrutinoside)-7-O-alpha-rhamnoside, kaempferol 3-O-[beta-glucosyl-(1 --> 2)]-[alpha-rhamnosyl-(1 --> 6)]-beta-glucoside-7-O-alpha-rhamnoside and kaempferol 3-O-[alpha-rhamnosyl-(1 --> 2)]-[alpha-rhamnosyl-(1 --> 4)]-beta-glucoside-7-O-alpha-rhamnoside together with benzoic acid 4-O-beta-glucoside, benzoic acid 4-O-alpha-rhamnosyl-(1 --> 2)-beta-glucoside and benzaldehyde 4-O-beta-glucoside have been isolated from methanolic extract of Moringa oleifera leaves. Also obtained from the same extract were known compounds, kaempferol 3-O-alpha-rhamnoside, kaempferol, syringic acid, gallic acid, rutin and quercetin 3-O-beta-glucoside. Their structures were determined using spectroscopic methods as well as comparison with data from known compounds.  相似文献   

11.
One new and six known flavone glycosides were isolated from the MeOH extract of Melilotus neapolitana Ten. The new compound, identified as 7-O-beta-D-glucopyranosyloxy-4',5-dihydroxy-3-[O-alpha-L-rhamnopyranosyl-(1-->6)-3-O-beta-D-glucopyranosyloxy]flavone (1) by 1D and 2D NMR techniques and mass spectra, was isolated along with kaempferol-3-O-rutinoside (2), kaempferol-3-O-glucoside (3), rutin (4), quercetin-3-O-glucoside (5), isorhamnetin-3-O-rutinoside (6), and isorhamnetin-3-O-glucoside (7). The antioxidant and radical scavenging activities of these compounds and the whole crude methanol extract were evaluated. The organic extract can inhibit MDA marker's synthesis by 57%. All the metabolites displayed good reducing power, with the kaempferol (2,3) and isorhamnetin derivatives (6,7) being less active than the corresponding quercetin derivatives 4,5.  相似文献   

12.
A new acylated kaempferol glycoside, kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 6)-O-[β-d-glucopyranosyl-(1 → 2)-4-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)]-β-d-galactopyranoside, has been isolated from the leaves of Tipuana tipu (Benth.) Lillo growing in Egypt, along with three known flavonol glycosides, kaempferol 3-O-rutinoside, quercetin 3-O-rutinoside (rutin) and kaempferol 3-O--l-rhamnopyranosyl-(1 → 6)]-[α-l-rhamnopyranosyl-(1 → 2]-β-d-glucopyranoside. Structure elucidation was achieved through different spectroscopic methods. Structure relationship with anti-inflammatory activity using carrageenin-induced rat paw oedema model is discussed.  相似文献   

13.
Three new acylated quercetin rhamnosides have been isolated from the leaves and stem of Calliandra haematocephala Hassk. (Fabaceae) and their structures were established as quercitrin 2'-O-caffeate (1), quercitrin 3'-O-gallate (2) and quercitrin 2',3'-di-O-gallate (3). Also, 17 known compounds were identified as gallic acid (4), methyl gallate (5), caffeic acid (6), myricitrin (7), quercitrin (8), myricetin 3-O-beta-D-4C1-glucopyranoside (9), afzelin (10), isoquercitrin (11), myricetin 3-O-(6'-O-galloyl)-beta-D-glucopyranoside (12), myricitrin 2'-O-gallate (13), quercitrin 2'-O-gallate (14), afzelin 2'-O-gallate (15), myricitrin 3'-O-gallate (16), afzelin 3'-O-gallate (17), 1,2,3,4,6-penta-O-galloyl-beta-D-4C1-glucopyranose (18), myricitrin 2',3'-di-O-gallate (19), quercetin 3-O-methyl ether (20), for the first time from the genus Calliandra except for 6. Compounds 7, 8, 13, 14, 16 and 19 exhibited moderate to strong radical scavenging properties on lipid peroxidation, hydroxyl radical, superoxide anion generation and DPPH radical in comparison with that of quercetin as a positive control in vitro. Compounds 7 and 8 exhibited lethal effect towards brine shrimp Artemia salina.  相似文献   

14.
Liquid chromatography coupled to diode array and electrospray ionization mass spectrometry detection was used to establish the polyphenolic profile of an ethyl acetate fraction from Agrimonia eupatoria L. aqueous-alcoholic extract. Additionally, an HPLC technique with post-column derivatization by p-dimethylaminocinnamaldehyde was employed for the selective detection and quantification of flavan-3-ols. Important information was obtained by combining the data of these two HPLC techniques. Flavan-3-ols (catechin and procyanidins B1, B2, B3, B6, B7, C1, C2 and epicatechin-epicatechin-catechin), quercetin 3-O-glucoside, quercetin 3-O-galactoside, kaempferol 3-O-glucoside, kaempferol 3-O-(6'-O-p-coumaroyl)-glucoside, apigenin 6-C-glucoside and various phenolic acids were identified. Antioxidant activity of the Agrimonia eupatoria L. fraction containing these compounds was assessed through the 1,1-diphenyl-2-picrylhydrazyl, trolox equivalent antioxidant capacity and thiobarbituric acid reactive substances methods. Significant activity was observed for this fraction, where compounds with recognized antiinflammatory properties such as procyanidins, kaempferol 3-O-(6'-O-p-coumaroyl)-glucoside and quercetin glycosides were identified for the first time. These results are predictive of the beneficial effects of this fraction, or some of its compounds, in human health, as possible anti-inflammatory drug.  相似文献   

15.
Abstract

A novel acylated quercetin glycoside, floralpanasenoside A (1) and five known flavonoid glycosides, panasenoside (2), quercetin 3-O-(2''-β-D-glucopyranosyl)-β-D- galactopyranoside (3), trifolin (4) kaempferol 7-O-α-L-rhamnoside (5), and afzelin (6) were isolated from the flower buds of Panax ginseng. Their structures were established by spectroscopic data and comparison with the literature values. Four of the six isolated compounds including 1 (IC50 = 62.4) exhibited α-glucosidase inhibitory activity with IC50 values lower than acarbose (385.2?μM). The molecular docking study indicated that 1 bound to the active site of α-glucosidase with numerous hydrogen bond interactions.  相似文献   

16.
Two new flavonoid glycosides kaempferol 3-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1), and quercetin 3-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), together with six known flavonoid glycosides were isolated from the leaves of Solidago altissima L. grown in Kochi of Japan. The structure elucidation of the isolated compounds was performed by acid hydrolysis and spectroscopic methods including UV, IR, ESI-MS, 1D- and 2D-NMR experiments.  相似文献   

17.
From the stems of Millettia nitida var. hirsutissima, three new isoflavone glycosides, formononetin 7-O-beta-D-(6'-ethylmalonyl)-glucopyranoside (1, hirsutissimiside A), 5-O-methyl genistein 7-O-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside (3, hirsutissimiside B), retusin 7,8-di-O-beta-D-glucopyranoside (4, hirsutissimiside C) and two known isoflavone glycosides (2) and (5) have been isolated. The structures of the compounds were determined by spectroscopic and chemical means.  相似文献   

18.
Two major acylated flavonoid tetraglycosides were isolated from the methanol extract of oolong tea. Their structures were elucidated by spectroscopic methods as quercetin 3-O-[2(G)-(E)-coumaroyl-3(G)-O-beta-D-glucosyl-3(R)-O-beta-D-glucosylrutinoside] (1) and kaempferol 3-O-[2(G)-(E)-coumaroyl-3(G)-O-beta-D-glucosyl-3(R)-O-beta-D-glucosylrutinoside] (2). Compounds 1 and 2 exhibited scavenging activity against DPPH radical with EC(50) values of 30.5 and 487.2 microM, respectively.  相似文献   

19.
Two new acylated flavonol glycosides, named amurenosides A and B, together with quercetin 3-(2,6-di-O-alpha-rhamnopyranosyl-beta-galactopyranoside), have been isolated from the whole plant of Vicia amurensis. Their structures were elucidated as quercetin 3-O-alpha-L-(3-feruloylrhamnopyranosyl)(1-->6)-[alpha-L-rhamnopyra nosyl(1-->2)]-beta-D-galactopyranoside and quercetin 3-O-alpha-L-(2-feruloylrhamnopyranosyl)(1-->6)-[alpha-L-rhamnopyra nosyl(1-->2)]-beta-D-galactopyranoside on the basis of various NMR techniques, FAB mass spectrometry and chemical reactions.  相似文献   

20.
Twelve compounds were isolated from Chrozophora tinctoria (L.) Raf. They were identified as kaempferol, kaempferol 3-O-β-glucopyranoside, kaempferol 3-O-(6″-α-rhamnopyranosyl)-β-glucopyranoside, quercetin, quercetin 3-O-β-glucopyranoside, quercetin 3-O-(6″-α-rhamnopyranosyl)-β-glucopyranoside, apigenin, apigenin 7-O-β-glucopyranoside, acacetin, gallic acid, methyl gallate and β-sitosterol-3-O-β-glucopyranoside. Their structures were elucidated by chemical and spectral methods. Furthermore, chemosystematics of the isolated compounds is briefly discussed. It was indicated that C. tinctoria is the only species of Chrozophora that has the capability to synthesis kaempferol aglycone and their glycosides, and the finding is supported by its distinct morphological and anatomical aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号