首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The production of high-performance ceramics requires the protection of powder particles against chemical reactions. Hydrolysis and oxidation of nanoscaled non-oxidic powders can be impeded by a coating consisting of a dense adsorbed layer of amphiphilic molecules. Using Monte Carlo simulations for a coarse grained model the adsorption equilibrium of differently shaped amphiphiles in apolar and polar solvents is investigated. For estimating the protection capability of the adsorbed surfactant film in aqueous environment we study the diffusion of small hydrophilic particles through the adsorbed surfactant film. The surfactants considered as coating agents differ in the number of hydrocarbon tails. It is found that amphiphiles with a single hydrocarbon tail or at most two branches are more suitable to protect particle surfaces than amphiphiles with three or four branches, although the adsorption energy of amphiphiles with many branches is higher.  相似文献   

2.
Emulsions stabilized through the adsorption of colloidal particles at the liquid-liquid interface have long been used and investigated in a number of different applications. The interfacial adsorption of particles can be induced by adjusting the particle wetting behavior in the liquid media. Here, we report a new approach to prepare stable oil-in-water emulsions by tailoring the wetting behavior of colloidal particles in water using short amphiphilic molecules. We illustrate the method using hydrophilic metal oxide particles initially dispersed in the aqueous phase. The wettability of such particles in water is reduced by an in situ surface hydrophobization that induces particle adsorption at oil-water interfaces. We evaluate the conditions required for particle adsorption at the liquid-liquid interface and discuss the effect of the emulsion initial composition on the final microstructure of oil-water mixtures containing high concentrations of alumina particles modified with short carboxylic acids. This new approach for emulsion preparation can be easily applied to a variety of other metal oxide particles.  相似文献   

3.
Wet foams are used in many important technologies either as end or intermediate products. However, the thermodynamic instability of wet foams leads to undesired bubble coarsening over time. Foam stability can be drastically improved by using particles instead of surfactants as foam stabilizers, since particles tend to adsorb irreversibly at the air-water interface. Recently, we presented a novel method for the preparation of high-volume particle-stabilized foams which show neither bubble growth nor drainage over more than 4 days. The method is based on the in-situ hydrophobization of initially hydrophilic particles to enable their adsorption on the surface of air bubbles. In-situ hydrophobization is accomplished through the adsorption of short-chain amphiphiles on the particle surface. In this work, we illustrate how this novel method can be applied to particles with various surface chemistries. For that purpose, the functional group of the amphiphilic molecule was tailored according to the surface chemistry of the particles to be used as foam stabilizers. Short-chain carboxylic acids, alkyl gallates, and alkylamines were shown to be appropriate amphiphiles to in-situ hydrophobize the surface of different inorganic particles. Ultrastable wet foams of various chemical compositions were prepared using these amphiphiles. The simplicity and versatility of this approach is expected to aid the formulation of stable wet foams for a variety of applications in materials manufacturing, food, cosmetics, and oil recovery, among others.  相似文献   

4.
The boundary effects on DC-electrokinetic behavior of colloidal cylinder(s) in the vicinity of a conducting wall is investigated through a computational model. The contribution of the hydrodynamic drag, gravity, electrokinetic (i.e., electrophoretic and dielectrophoretic), and colloidal forces (i.e., forces due to the electrical double layer and van der Waals interactions) are incorporated in the model. The contribution of electrokinetic and colloidal forces are included by introducing the resulting forces as an external force acting on the particle(s). The colloidal forces are implemented with the prescribed expressions from the literature, and the electrokinetic force is obtained by integrating the corresponding Maxwell stress tensor over the particles' surfaces. The electrokinetic slip-velocity together with the thin electrical double layer assumption is applied on the surfaces. The position and velocity of the particles and the resulting electric and flow fields are obtained and the physical insight for the behavior of the colloidal cylinders are discussed in conjunction with the experimental observations in the literature.  相似文献   

5.
The standard methods for obtaining adsorption isotherms on colloidal suspensions are usually very time consuming and involve a large number of steps and assumptions that increase the experimental errors. In this work, an alternative method is proposed to evaluate the adsorption behavior of electrosteric-stabilized systems based on electrokinetic sonic amplitude signal measurements. The new method, entitled "zeta-sorption", is noticeably less time-consuming when compared to conventional procedures but showed great precision and reliability confirmed by comparison with data obtained from conventional routes on alumina-polyacrylate and alumina-citric acid aqueous suspensions. The experimental conditions that restrict the applicability of the new method were identified and justified by discussing the possible ion exchanges.  相似文献   

6.
A relation between the dynamic electrophoretic mobility of spherical colloidal particles in a concentrated suspension and the colloid vibration potential (CVP) generated in the suspension by a sound wave is obtained from the analogy with the corresponding Onsager relation between electrophoretic mobility and sedimentation potential in concentrated suspensions previously derived on the basis of Kuwabara's cell model. The obtained expression for CVP is applicable to the case where the particle zeta potential is low, the particle relative permittivity is very small, and the overlapping of the electrical double layers of adjacent particles is negligible. It is found that CVP shows much stronger dependence on the particle volume fraction φ than predicted from the φ dependence of the dynamic electrophoretic mobility. It is also suggested that the same relation holds between the electrokinetic sonic amplitude of a concentrated suspension of spherical colloidal particles and the dynamic electrophoretic mobility. Copyright 1999 Academic Press.  相似文献   

7.
We investigate bulk and interfacial properties of a recently proposed hard-body model for a ternary mixture of amphiphilic particles, spheres and needles using density functional theory. The simple model amphiphiles are formed by bonding a vanishingly thin needle tail radially to a hard-sphere head group. Such particles provide a natural amphiphile when added to a binary mixture of spheres and needles. As all interactions are hard, we seek to find whether amphiphilic effects can be driven by entropy without the need to invoke attractive interactions. In order to assess the amphiphilic character of the model we first examine the spatial and orientational distribution of the amphiphiles at the free interface between demixed needle-rich and amphiphile-rich fluid phases of the binary amphiphile-needle subsystem. We then consider the free interface between sphere-rich and needle-rich phases upon adding amphiphiles with low concentration to the demixed system. In both cases the orientational distribution of the particles in the interface provides strong evidence that amphiphilic properties can arise purely from geometrical packing effects.  相似文献   

8.
Al-Mg MMH正电胶体粒子体系的流变学   总被引:1,自引:0,他引:1  
研究了铝/镁混合金属氢氧化物(MMH)粒子含量,PH值,电解质等因素对MMH悬浮液流变学的影响,发现MMH粒子浓度的增加使悬浮体从牛顿型流体变为带有屈服值的假塑性流体;在相对很低的粒子浓度(2%)时,通过改变粒子表面化学状态和粒子周围的介质环境可以改变悬浮体的流动形态;MMH悬浮体触变性结构与高PH值时合成锂皂石悬浮体的结构极为相似,是粒子间的静电排斥作用所致。  相似文献   

9.
Influence of electrical double-layer interaction on coal flotation   总被引:5,自引:0,他引:5  
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.  相似文献   

10.
Inorganic colloidal particles which are in situ hydrophobized upon adsorption of short-chain amphiphilic molecules can be used as foam stabilizers. In this study, we tailor the microstructure of particle-stabilized wet foams, namely, the foam air content, average bubble size, and bubble size distribution, by changing the composition of the initial colloidal suspension. Wet foams featuring average bubble sizes between 10 and 200 microm and air contents between 45% and 90% were obtained by adjusting the amphiphile and particle concentration, pH, ionic strength, and particle size in the initial suspension. The influence of these parameters on the bubble size was satisfactorily described in terms of a balance between the shear stress applied during mixing and the counteracting Laplace pressure of the air bubbles. This model, originally developed for oil droplets in emulsions, can therefore be used to deliberately tailor the microstructure of particle-stabilized wet foams.  相似文献   

11.
Stable dispersions of colloidal metals in hydrocarbons have been prepared by a novel phase-transfer method. The metals were gold, silver, palladium and ruthenium; the hydrocarbons were n-hexane, cyclohexane and benzene. The phase transfer of colloidal metal particles from an aqueous phase to a hydrocarbon phase was achieved by adding salt to the emulsion of hydrocarbon in the aqueous suspension of metal with sodium oleate. The salts were sodium chloride, magnesium chloride, sodium sulfate, etc. The size distributions of the metal particles in the resulting hydrocarbon suspensions were almost the same as that of the original aqueous suspension. The dispersions of colloidal metals in hydrocarbons were stable for a long period of time without the addition of hydrocarbon-soluble stabilizer. The critical phase-transfer concentrations of various salts were determined. The phase-transfer powers of cations were larger than those of anions. Those of divalent and trivalent cations were exceedingly larger than that of the monovalent cation. The concentration of colloidal metal dispersed in hydrocarbon was achieved by using the phase-transfer method.  相似文献   

12.
A cationic and an anionic poly(N-isopropylacrylamide) (poly(NIPAM)) microgel latex were synthesized via batch radical polymerization under emulsifier-free conditions. The hydrodynamic properties, colloidal stability, and electrokinetic characteristics of these two samples were studied. The hydrodynamic particle size variation was discussed by considering the effect of salinity and temperature on the shrinkage of the thermally sensitive polymer domains. The colloidal stability also depended on temperature and electrolyte concentration. A stability diagram with two well-defined domains (stable and unstable) was obtained. The flow from one domain to the other was fully reversible due to the peculiar (de)hydration properties of the polymer. The electrokinetic behavior, which depends on electrical and frictional properties of the particles, was analyzed via electrophoretic mobility measurements. Results were discussed by considering both the particle structure dependence on temperature and salinity, and the electric double layer compression. In addition, the electrophoretic mobility data were analyzed using Ohshima's equations for particles covered by an ion-penetrable surface charged layer, as well as using another simpler equation for charges located on a hydrodynamic equivalent hard sphere. Differences between the properties of both latexes were justified by the presence of a hydrophilic comonomer, aminoethyl methacrylate hydrochloride (AEMH), in the cationic microgel.  相似文献   

13.
The polarizability of polymer-coated colloidal particles, as measured via dielectric relaxation spectroscopy, reflects on the degree to which convection, diffusion, and electromigration deform the equilibrium double layer. With a polymer coating, convection and electro-osmosis are resisted by hydrodynamic drag on the polymer segments. The electro-osmotic flow near the underlying bare surface is therefore diminished. Characteristics of the particles and the adsorbed polymer can, in principle, be inferred by measuring the frequency-dependent polarizability. In this work, "exact" numerical solutions of the electrokinetic equations are used to examine how adsorbed polymer changes the particle polarizability and, hence, the conductivity and dielectric constant increments of dilute suspensions. For neutral polymer coatings, the conductivity and dielectric constant increments are found to be very similar to those of the underlying bare particles, so the response depends mostly on the underlying bare particles. These observations suggest that dielectric spectroscopy is best used to determine the underlying surface charge, with characteristics of the coating inferred from the electrophoretic or dynamic mobility, together with the hydrodynamic radius obtained from sedimentation or dynamic light scattering. Addressed briefly are the effects of added counterions and nonspecific adsorption. The electrokinetic model explored in this work can be used to guide experiments (frequency and ionic strength, for example) to either minimize or maximize the sensitivity of the complex conductivity to the coating thickness or permeability.  相似文献   

14.
In this paper, a general electrokinetic theory for concentrated suspensions in salt-free media is derived. Our model predicts the electrical conductivity and the electrophoretic mobility of spherical particles in salt-free suspensions for arbitrary conditions regarding particle charge, volume fraction, counterion properties, and overlapping of double layers of adjacent particles. For brevity, hydrolysis effects and parasitic effects from dissolved carbon dioxide, which are present to some extent in more "realistic" salt-free suspensions, will not be addressed in this paper. These issues will be analyzed in a forthcoming extension. However, previous models are revised, and different sets of boundary conditions, frequently found in the literature, are extensively analyzed. Our results confirm the so-called counterion condensation effect and clearly display its influence on electrokinetic properties such as electrical conductivity and electrophoretic mobility for different theoretical conditions. We show that the electrophoretic mobility increases as particle charge increases for a given particle volume fraction until the charge region where counterion condensation takes place is attained, for the above-mentioned sets of boundary conditions. However, it decreases as particle volume fraction increases for a given particle charge. Instead, the electrical conductivity always increases with either particle charge for fixed particle volume fraction or volume fraction for fixed particle charge, whatever the set of boundary conditions previously referred. In addition, the influence of the electric permittivity of the particles on their electrokinetic properties in salt-free media is examined for those frames of boundary conditions.  相似文献   

15.
Oligomeric electrolytes of benzene and naphthalene series are synthesized, and the effects of chain length and hydrophilic group position in their molecules on not only the aggregative stability but also rheological and electrokinetic properties of concentrated mineral suspensions are studied. On the basis of the data of adsorption experiments, a parallel orientation of oligomer molecules on the surface of dispersed phase particles is revealed. By the sedimentation and electron microscopy techniques, it is established that, at the optimal concentration of oligomers, systems display aggregative stability. It is shown that the plasticizing effect of oligo-electrolytes is due to the combined action of electrostatic and adsorption-solvation factors.  相似文献   

16.
This work deals with the problem of deriving theoretical connections between rheology and interparticle forces in colloidal suspensions. The nature of interparticle forces determines the colloidal structure (crystalline order due to long range repulsive forces, flocculation due to attractive forces, etc.) and hence, the flow behavior of suspensions. The aim of this article is to discuss how these interactions enter the modeling of rheometric functions, in particular, the shear viscosity. In this sense, the main interactions commonly appearing in colloids are reviewed, as well as the role they play in phase transition behavior. Then, a series of approaches relating the interaction potential to viscosity is examined. The results of applying these models to experimental data are also discussed. Finally, examples of viscosity modeling for different interaction potentials are given, by using the structural model proposed previously by the authors. The possibility of relating the flow behavior of colloidal suspensions to the interaction between particles offers new perspectives for the study and technical applications of these systems.  相似文献   

17.
In this paper the electrophoretic mobility and the electrical conductivity of concentrated suspensions of spherical colloidal particles have been numerically studied under arbitrary conditions including zeta potential, particle volume fraction, double-layer thickness (overlapping of double layers is allowed), surface conductance by a dynamic Stern layer model (DSL), and ionic properties of the solution. We present an extensive set of numerical data of both the electrophoretic mobility and the electrical conductivity versus zeta potential and particle volume fraction, for different electrolyte concentrations. The treatment is based on the use of a cell model to account for hydrodynamic and electrical interactions between particles. Other theoretical approaches have also been considered for comparison. Furthermore, the study includes the possibility of adsorption and lateral motion of ions in the inner region of the double layers (DSL model), according to the theory developed by C. S. Mangelsdorf and L. R. White (J. Chem. Soc. Faraday Trans.86, 2859 (1990)). The results show that the correct limiting cases of low zeta potentials and thin double layers for dilute suspensions are fulfilled by our conductivity formula. Moreover, the presence of a DSL causes very important changes, even dramatic, on the values of both the electrophoretic mobility and the electrical conductivity for a great range of volume fractions and zeta potentials, specially when double layers of adjacent cells overlap, in comparison with the standard case (no Stern layer present). It can be concluded that in general the presence of a dynamic Stern layer causes the electrophoretic mobility to decrease and the electrical conductivity to increase in comparison with the standard case for every volume fraction, zeta potential, and double-layer thickness.  相似文献   

18.
A combined experimental and multiscale simulation study of the influence of polymer brush modification on interactions of colloidal particles and rheological properties of dense colloidal suspensions has been conducted. Our colloidal suspension is comprised of polydisperse MgO colloidal particles modified with poly(ethylene oxide) (PEO) brushes in water. The shear stress as a function of shear rate was determined experimentally and from multiscale simulations for a suspension of 0.48 volume fraction colloids at room temperature for both bare and PEO-modified MgO colloids. Bare MgO particles exhibited strong shear thinning behavior and a yield stress on the order of several Pascals in both experiments and simulations. In contrast, simulations of PEO-modified colloids revealed no significant yielding or shear thinning and viscosity only a few times larger than solvent viscosity. This behavior is inconsistent with results obtained from experiments where modification of colloids with PEO brushes formed by adsorption of PEO-based comb-branched chains resulted in relatively little change in suspension rheology compared to bare colloids over the range of concentration of comb-branch additives investigated. We attribute this discrepancy in rheological properties between simulation and experiment for PEO-modified colloidal suspensions to heterogeneous adsorption of the comb-branch polymers.  相似文献   

19.
New Monte Carlo simulations are presented for nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent specifically investigating the roles of tail attraction and binary mixtures of different tail lengths. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate thermodynamic adsorption and surface-tension isotherms and compare results quantitatively to single-surfactant adsorption (Langmuir, 2007, 23, 1835). Surfactant tail groups with attractive interaction lead to cooperative adsorption at high surface coverage and higher maximum adsorption at the interface than those without. Moreover, adsorption and surface-tension isotherms with and without tail attraction are identical at low concentrations, deviating only near maximum coverage. Simulated binary mixtures of surfactants with differing lengths give intermediate behavior between that of the corresponding single-surfactant adsorption and surface-tension isotherms both with and without tail attraction. We successfully predict simulated mixture results with the thermodynamically consistent ideal adsorbed solution (IAS) theory for binary mixtures of unequal-sized surfactants using only the simulations from the single surfactants. Ultimately, we establish that a coarse-grained LJ surfactant system is useful for understanding actual surfactant systems when tail attraction is important and for unequal-sized mixtures of amphiphiles.  相似文献   

20.
This work is devoted to the preparation of magnetite-covered clay particles in aqueous medium. For this purpose, magnetite nanoparticles were synthesized by a coprecipitation method. These magnetic particles are adhered to sodium montmorillonite (NaMt) particles in aqueous suspensions of both materials, by appropriate control of the electrolyte concentrations. The best condition to produce such heteroaggregation corresponds to acid pH and approximately 1 mol/L ionic strength, when the electrokinetic potentials (zeta-potential) of both NaMt and Fe3O4 particles have high enough and opposite sign, as demonstrated from electrophoresis measurements. When a layer of magnetite re-covers the clay particles, the application of an external magnetic field induces a magnetic moment in clay-magnetite particles parallel to the external magnetic flux density. The sedimentation behavior of such magnetic particles is studied in the absence or presence of an external magnetic field in a vertical direction. The whole sedimentation behavior is also strongly affected by the formation of big flocculi in the suspensions under the action of internal colloidal interactions. van der Waals and dipole-dipole magnetic attractions between magnetite-covered clay particles dominate the flocculation processes. The different relative orientation of the clay-magnetite particles (edge-to-edge, face-to-edge, and face-to-face) are discussed in order to predict the most favored flocculi configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号