首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The on-line combination of CZE with capillary ITP (ITP-CZE) was used for the separation and quantification of selected flavonoids and phenolic acids in Hypericum perforatum leaves and flowers collected in six different localities in Slovakia. The leading electrolyte in the ITP preseparation step was 10 mM HCl with Tris as counterion (pH* 7.2). The terminating electrolyte was 50 mM boric acid of pH* 8.2 (adjusted with barium hydroxide). The BGE in the electrophoretic step contained 25 mM beta-hydroxy-4-morpholinopropanesulfonic acid (MOPSO), 50 mM Tris, 65 mM boric acid, pH* 8.3. The content of methanol in all electrolytes was 20% v/v. The total time of the analysis (including the preseparation step) was approximately 35 min. The rectilinear calibration ranges were between 0.125 and 5.0 microg/mL with kaempferol as internal standard. The correlation coefficients ranged between 0.9912 (for quercitrin and chlorogenic acid) and 0.9988 (for isoquercitrin). The RSD values are between 0.86 and 7.78% (n = 6) when determining rutin and quercetin (4 microg/mL). The optimized method was employed for the assay of flavonoids in medicinal plant extract of different collections of Hypericum perforatum haulm. The variability of the content of the active components depending on the place of collection was confirmed.  相似文献   

2.
Five flavonoids (hyperoside, isoquercitrin, quercitrin, quercetin and rutin) were separated and determined in extracts of Hypericum perforatum leaves or flowers by capillary zone electrophoresis (CZE) with isotachophoretic (ITP) sample pre-treatment using on-line column coupling configuration. The background electrolyte (BGE) used in the CZE step was different from the leading and terminating ITP electrolytes but all the electrolytes contained 20% (v/v) of methanol. The optimal leading electrolyte was 10 mM HCl of pH* approximately 7.2 (adjusted with Tris) and the terminating electrolyte was 50 mM H3BO3 of pH* approximately 8.2 (adjusted with barium hydroxide). This operational system allowed to concentrate and pre-separate selectively the flavonoid fraction from other plant constituents before the introduction of the flavonoids into the CZE capillary. The BGE for the CZE step was 50 mM Tris buffer of pH* approximately 8.75 containing 25 mM N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid as co-ion and 55 mM H3BO3 as complex-forming agent. The ITP-CZE method with spectrophotometric detection at 254 nm was suitable for the quantitation of the flavonoids in real natural samples; kaempferol was used as internal standard. The limit of detection for quercetin-3-O-glycosides was 100 ng ml(-1) and calibration curves were rectilinear in the range 1-10 microg ml (-1) for most of the analytes. The RSD values ranged between 0.9 and 2.7% (n=3) when determining approximately 0.07-1.2% of the individual flavonoids in dried medicinal plants.  相似文献   

3.
We investigated the potential of CE coupled to electrospray MS (CE-ESI-MS) in metabolite profiling of human urine without any sample prefractionation step. A heterogeneous mixture of biologically relevant compounds covering a broad range of physicochemical properties was used to optimize separation conditions in fused-silica capillaries. A running electrolyte containing 50 mM of acetic acid and 50 mM of formic acid at pH 2.5 was used for the CE separations. A sheath-flow electrospray interface was employed for CE-ESI-MS analysis. Sheath liquids containing 80:20 v/v methanol/water with 0.1% v/v of acetic acid or 60:40 v/v isopropanol/water with 0.5% v/v of ammonia were selected for optimum detection in positive and negative ESI modes, respectively. Reproducibility and sensitivity were studied, and strategies for identification of the separated urinary compounds are suggested. We report major advantages and disadvantages of CE-ESI-MS for metabolite profiling of human body fluids. This work may be regarded as a first step in the use of CE-ESI-MS for reliable differential analysis of body fluids from healthy and diseased individuals.  相似文献   

4.
The aim of this work was to develop a fast method using capillary electrophoresis for the determination of creatinine in human urine samples. The pH and constituents of the background electrolyte were selected by inspection of effective mobility of creatinine and candidate urine interferents versus pH curves. The tendency of the analyte to undergo electromigration dispersion and the buffer capacity were evaluated by the Peakmaster software and considered in the optimization of the background electrolyte, composed by 10 mmol L(-1) tris(hydroxymethyl)aminomethane and 20 mmol L(-1) 2-hydroxyisobutyric acid (HIBA) at pH 3.93. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 microm I.D.), with short-end injection configuration and direct UV detection at 215 nm. The migration time of creatinine was only 22s. A few figures of merit of the method are as follows: good linearity in the concentration interval of 5-70 mg L(-1) (R(2)>0.99), limit of detection of 0.5 mg L(-1), inter-day precision better than 2.7% (n=9) and recovery in the range 99.0-103.7% at three concentration levels (50, 100 and 150 mg L(-1)). Urine samples were prepared by deproteination with acetonitrile (1:3 sample:acetonitrile, v/v), centrifugation and dilution of a deproteinated aliquot with 12.5 mmol L(-1) HIBA (1:4, v/v). Creatinine concentrations between 489 and 1063 mg L(-1) were obtained in the urine of four healthy volunteers.  相似文献   

5.
A fast and simple capillary electrophoretic method suitable for the determination of native alpha-, beta-, gamma-cyclodextrins, their randomly substituted tert-butyl derivatives (average degree of substitution 3.8-4.4), heptakis (2,6-di-O-methyl)- and heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin was developed. Naphthyl-2-sulfonic acid (2-NSA), 3-iodobenzoic acid (3-IBA) and (1S)-1-phenylethylamine (PHEA) were tested as selective complex forming and UV absorbing background electrolyte additives. The composition of optimized background electrolyte for the separation of uncharged cyclodextrins and their derivatives was: 15 mM 3-iodobenzoic acid titrated with tris[hydroxymethyl]aminomethane to pH 8.0, 5% (v/v) of acetonitrile. A complete resolution of mono-2-O-, mono-3-O- and mono-6-O-carboxymethyl-beta-cyclodextrin regioisomers was achieved in the optimized background electrolyte system: 40 mM PHEA titrated with 2-[N-morpholino]ethanesulfonic acid to pH 5.6. In addition to indirect UV detection a contactless conductometric detector was successfully utilized.  相似文献   

6.
Three standardised, capillary zone electrophoresis-electrospray ionisation mass spectrometry (CZE-ESI-MS) methods were developed for the analysis of six drug candidates and their respective process-related impurities comprising a total of 22 analytes with a range of functional groups and lipophilicities. The selected background electrolyte conditions were found to be: 60/40 v/v 10 mM ammonium formate pH 3.5/organic, 60/40 v/v 10 mM ammonium acetate pH 7.0/organic and 10 mM piperidine, pH 10.5, where the organic solvent is 50/50 v/v methanol/acetonitrile. The coaxial sheath flow consisted of either 0.1% v/v formic acid in 50/50 v/v methanol/water, or 10 mM ammonium acetate in 50/50 v/v methanol/water, depending on the mixture being analysed. Factor analysis and informational theory were used to quantify the orthogonality of the methods and predict their complementarities. The three selected CZE-ESI-MS methods allowed the identification of 21 out of 22 of all the drug candidates and their process-related impurities and provided orthogonality with four established high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. These methodologies therefore form the basis of a generic approach to impurity profiling of pharmaceutical drug candidates and can be applied with little or no analytical method development, thereby offering significant resource and time savings.  相似文献   

7.
A high-performance liquid chromatographic (HPLC) method and a cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method were developed to separate and determine oleanolic acid (OA) and ursolic acid (UA) in Prunella vulgaris. HPLC separations were carried out on a Hedera ODS C18 column with methanol -H2O- acetic acid (85:15:0.3, v/v/v) as mobile phase at a flow-rate of 0.8 ml min?1. CD-MEKC analysis was performed on a CL1030 capillary electrophoresis system with a 6% (v/v) methanol solution (pH = 9.0) containing 10 mM disodium tetraborate, 10 mM sodium dihydrogen phosphate, 50 mM sodium dodecylsulfate (SDS), 15 mM 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) as background electrolyte. The analytical results of HPLC and CD-MEKC were compared with each other. CD-MEKC has better analytical efficiency for two components, and the analytical time (15 min) was shorter than that of HPLC (35 min).  相似文献   

8.
三角形法和四面体法优化选择毛细管区带电泳背景电解质   总被引:2,自引:1,他引:1  
孙国祥  宋文璟  林婷 《色谱》2008,26(2):232-236
建立了两种高效、快速的毛细管区带电泳背景电解质(BGE)的优化方法三角形优化法和四面体优化法。以色谱指纹图谱指数F和色谱指纹图谱相对指数Fr作为评价毛细管电泳分析系统的目标函数,以雪莲药材水提取液为样品,考察一定浓度的硼砂、硼酸、磷酸氢二钠和磷酸二氢钠溶液按三角形优化法和四面体优化法构成背景电解质时对样品的分离情况,通过添加有机改性剂和调节pH进行再优化。用三角形法优化出以50 mmol/L硼砂-含3%乙腈的150 mmol/L磷酸二氢钠(体积比为1∶1)作为BGE时分离效果最佳,用四面体法优化出以50 mmol/L硼砂-150 mmol/L磷酸二氢钠-200 mmol/L硼酸(体积比为1∶1∶2,用0.1 mol/L氢氧化钠调pH 8.55)作为BGE时分离效果最佳,分别获得28个和25个电泳峰。所建立的方法操作简捷,适用于中药材水提取液或醇提取液的毛细管区带电泳BGE的选择。  相似文献   

9.
Last years chemical properties of carbon nanotubes (CNTs) have attracted high interest. One of the most important issues is the capability of CNTs to adsorb analytes on its surface. In this work, such property has been used to preconcentrate trace tetracyclines from environmental water samples at the trace level. Multi-walled carbon nanotubes (MWNTs) have showed higher capacity than other two single-walled carbon nanotubes (SWNTs). Preconcentration of the samples was performed in a flow system at-line coupled to the CE-MS equipment. The preconcentration of tetracyclines on MWNTs followed by capillary electrophoresis-mass spectrometry allows the detection of 0.30-0.69 microg/L of tetracyclines for the analysis of 10 mL of samples. Recoveries for the analysis of spiked samples ranged from 98.6 to 103.2% and the precision from 5.4 to 8.2%. Separation of tetracylines in the electrophoretic system was achieved using 50 mM formic acid at pH 2.0 as a background electrolyte. Atmospheric pressure electrospray ionization mass spectrometry detection was accomplished using 50:50 (v/v) methanol/water containing 0.5% (v/v) formic acid as a sheath liquid.  相似文献   

10.
Two on-line sample concentration techniques, sample stacking and sweeping under pH-suppressed electroosmotic flow, were evaluated in microemulsion electrokinetic chromatography. The concept of stacking with anion selective electrokinetic injection and a water plug in a reverse-migrating microemulsion (SASIW-RMME) was brought forward in this article. Six flavonoids were concentrated using a microemulsion consisting of 80 mM sodium dodecyl sulfate, 1.2% (v/v) ethyl acetate, 0.6% (v/v) 1-butanol, 10% acetonitrile (v/v) and 50 mM phosphoric acid (pH* 1.8). Significant detector response improvements were achieved. The limits of detection were in the low ng/ml level. Finally, the sample of Fructus aurantii Immaturus was analyzed using sweeping technique.  相似文献   

11.
On-column complexation of Fe2+ and Fe3+ with 2,6-pyridinedicarboxylic acid (2,6-PDCA) formed anionic complexes, which were then separated by capillary zone electrophoresis with direct UV detection at 214 nm. To achieve reasonable separation selectivity and on-column complexation, the conditions such as pH, the concentration of 2,6-PCDA and the EOF modifiers in the electrolyte were examined. The electrolyte contained 5.0 mM 2,6-PDCA, 0.25 mM tetradecyltrimethlammonium bromide (TTAB) and 5% (v/v) acetonitrile at pH 4.0 was optimised for on-column complexation and the separation of Fe[PCDA]2(2-) and Fe[PCDA]2(-). To enhance the detection sensitivity, large-volume sample stacking (LVSS) was used for the on-line preconcentration of Fe[PCDA]2(2-) and Fe[PCDA]2(-). Under the optimised conditions, satisfactory working ranges (0.5-50 microM), lower detection limits (less than 0.1 microM) and good repeatability of the peak areas (R.S.D.: 5.2-7.8%, n = 5) was achieved using LVSS (300 s). With LVSS, the detection sensitivity was enhanced more than 50-fold compared to conventional hydrodynamic injection. The proposed method was used successfully for the determination of Fe2+ and Fe3+ in water samples.  相似文献   

12.
An on-line coupled capillary isotachophoresis - capillary zone electrophoresis method for the determination of lysozyme in selected food products is described. The optimized electrolyte system consisted of 10 mM NH(4)OH + 20 mM acetic acid (leading electrolyte), 5 mM epsilon -aminocaproic acid +5 mM acetic acid (terminating electrolyte), and 20 mM epsilon -aminocaproic acid +5 mM acetic acid +0.1% m/v hydroxypropylmethylcellulose (background electrolyte). A clear separation of lysozyme from other components of acidic sample extract was achieved within 15 min. Method characteristics, i.e., linearity (0-50 micrograms/mL), accuracy (recovery 96+/-5%), intra-assay (3.8%), quantification limit (1 microgram/ml), and detection limit (0.25 microgram/mL) were determined. Low laboriousness, sufficient sensitivity and low running costs are important attributes of this method. The developed method is suitable for the quantification of the egg content in egg pasta.  相似文献   

13.
An isotachophoretic method with conductivity detection was developed to determine naproxen in the presence of its metabolite 6-O-desmethylnaproxen in human serum. The leading electrolyte contained 10 mM hydrochloric acid, beta-alanine, pH 4.0 and 0.1% methylhydroxypropylcellulose. The terminating electrolyte was 10 mM 2-(N-morpholino)ethanesulfonic acid-tris(hydroxymethyl)aminomethane, pH 6.9, containing 20% (v/v) of ethanol. Naproxen was determined in serum supernatant after simple deproteination of the sample with ethanol. The isotachophoretic results were compared with those obtained by synchronous fluorescence spectrometry.  相似文献   

14.
Lee D  Shamsi SA 《Electrophoresis》2000,21(12):2405-2411
Nine component mixtures of a furan library were simultaneously separated by capillary zone electrophoresis (CZE) using a phosphate buffer as a background electrolyte at low pH. The effects of buffer concentration, buffer pH, type and concentration of organic solvents on the electrophoretic mobility, resolution, and analysis time were systematically investigated. Resolution and efficiency of furan library components were further improved using cyclodextrin (CD)-modified CZE. Under optimum conditions, eight of the nine furans were baseline-resolved in less than 10 min at 30 kV using 50 mM phosphate buffer, 10% v/v acetonitrile (ACN), pH 2.0, with 5 mM gamma-CD.  相似文献   

15.
The separation of the basic drug lidocaine and six of its metabolites has been investigated both by using volatile aqueous electrolyte system, at low pH and by employing non-aqueous electrolyte systems. In aqueous systems, the best separation of the compounds under the investigated conditions was achieved by using the electrolyte 60 mM trifluoroacetic acid (TFA)/triethylamine (TEA) at pH 2.5 containing 15% methanol. With this electrolyte, all seven compounds were well separated with high efficiency and migration time repeatability. The separations with bare fused-silica capillaries and polyacrylamide-coated capillaries were compared with higher separation efficiency with the latter. On the other hand, near baseline separation of all the seven compounds was also obtained by employing the non-aqueous electrolyte, 40 mM ammonium acetate in methanol and TFA (99:1, v/v), with comparable migration time repeatability but lower separation efficiency relative to the aqueous system.  相似文献   

16.
Sun B  Macka M  Haddad PR 《Electrophoresis》2002,23(15):2430-2438
Capillary electrophoresis (CE) with UV detection was used for the determination of arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, p-aminophenylarsonic acid, 4-hydroxy-3-nitrobenzenearsonic acid, 4-nitrophenylarsonic acid, phenylarsonic acid, and phenylarsine oxide. The electrophoretic mobilities of these anionic species were determined in a 20 mM phosphate buffer in a pH range from 4 to 11, which established pH 10 as the optimum for the separation. The target analytes were then separated in a fused-silica capillary using 20 mM NaHCO(3)-Na(2)CO(3) buffer, pH 10, as electrolyte and detected at 192 nm. Both normal- and reversed electroosmotic flow (EOF) separation modes were investigated and in the latter case, poly(diallydimethylammonium chloride) (PDDAC), was used for dynamic coating of the capillary and to provide a stable and reproducible reversed EOF (relative standard deviation RSD, 0.39%). The influence of electrolyte pH and composition, applied voltage, as well as EOF reversal protocols upon the method performance criteria were investigated. The optimised method provided limits of detection for the target analytes of 1.62, 6.22, 1.45, 1.83, 0.34, 0.40, 0.40, 0.18, and 0.30 mg/L As, respectively. Linearity was obtained in the range of 0.5-40 mg/L As (for aryl compounds) and from 5-100 mg/L As (for the remaining analytes). Reproducibility of peak areas was in the range of 0.8-5.5% RSD. The method was applied to the determination of four aryl arsenic compounds used as additives in animal feed. Analytes were extracted with 40 mM hydrochloric acid - acetonitrile 4:1 v/v, and then cleaned up by passing through a C(18) solid-phase extraction cartridge before analysis by CE with detection at 200 nm. Recoveries for the four analytes were in the range of 78.8-108.3%.  相似文献   

17.
Chiral resolution of native DL-tartaric acid was achieved by ion-pair capillary electrophoresis (CE) using an aqueous-ethanol background electrolyte with (1R,2R)-(-)-1,2-diaminocyclohexane (R-DACH) as a chiral counterion. Factors affecting chiral resolution and migration time of tartaric acid were studied. By increasing the viscosity of the background electrolyte and the ion-pair formation, using organic solvents with a lower relative dielectric constant, resulted in a longer migration time. The optimum conditions for both high resolution and short migration time of tartaric acid were found to be a mixture of 65% v/v ethanol and 35% v/v aqueous solution containing 30 mM R-DACH and 75 mM phosphoric acid (pH 5.1) with an applied voltage of -30 kV at 25 degrees C, using direct detection at 200 nm. By using this system, the resolution (Rs) of racemic tartaric acid was approximately 1. The electrophoretic patterns of tartaric and malic acids suggest that two carboxyl groups and two hydroxyl groups of tartaric acid are associated with the enantioseparation of tartaric acid by the proposed CE method.  相似文献   

18.
《Analytical letters》2012,45(11):2025-2037
Abstract

A novel method was developed for separation and determination of D-gluconic acid produced during fermentation by capillary zone electrophoresis (CZE) with direct UV detection at 214 nm, using selected carrier electrolyte composed of 6 mM potassium biphthalate, 50 mM disodium hydrogen phosphate and 15% (v/v) acetonitrile. The effects of concentration of phthalate, phosphate and organic modifier (acetonitrile), as well as temperature for the separation were investigated. The method is simple, inexpensive and will make it very useful in the gluconic acid industry.  相似文献   

19.
The development of new sensitive methods for the analysis of non-steroidal anti-inflammatory drugs (NSAIDs) in water samples is of great importance. In this work, seven NSAIDs were separated within 9 min using 15 mM sodium tetraborate (pH 9.2) containing 0.1% (w/v) hexadimethrine bromide (HDMB) and 10% (v/v) methanol. Field-amplified sample injection (FASI) was examined and found to improve the detection limits by 200-fold providing detection limits of 0.6-2.0 microg/L, but these are insufficient for the determination of NSAIDs as environmental pollutants in water samples. To improve the sensitivity further, electrokinetic supercharging (EKS) was examined. The optimum EKS method involved hydrodynamic injection leading electrolyte (100 mM NaCl, 30 s, 50 mbar), electrokinetic injection of the sample (200 s, -10 kV) and finally injection of the terminating electrolyte (100 mM 2-(cyclohexylamino) ethanesulphonic acid, CHES, 40s, 50 mbar). With this method, the sensitivity was improved by 2400-fold giving detection limits of 50-180 ng/L. The developed method was validated and then applied to the analysis of wastewater samples from a local sewage treatment plant. The detection limits were found to increase by approximately 10-fold, however, this is still lower than levels previously found in wastewater samples from European and Mediterranean cities. The proposed method has the advantage of simplicity and achieving sensitivity through high-preconcentration power without the use of off-line chromatographic sample cleanup.  相似文献   

20.
A fast and simple capillary electrophoretic method suitable for the determination of native α-, β-, γ-cyclodextrins, their randomly substituted tert-butyl derivatives (average degree of substitution 3.8 – 4.4), heptakis (2,6-di-O-methyl)- and heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin was developed. Naphthyl-2-sulfonic acid (2-NSA), 3-iodobenzoic acid (3-IBA) and (1S)-1-phenylethylamine (PHEA) were tested as selective complex forming and UV absorbing background electrolyte additives. The composition of optimized background electrolyte for the separation of uncharged cyclodextrins and their derivatives was: 15 mM 3-iodobenzoic acid titrated with tris[hydroxymethyl]aminomethane to pH 8.0, 5% (v/v) of acetonitrile. A complete resolution of mono-2-O-, mono-3-O- and mono-6-O-carboxymethyl-β-cyclodextrin regioisomers was achieved in the optimized background electrolyte system: 40 mM PHEA titrated with 2-[N-morpholino]ethanesulfonic acid to pH 5.6. In addition to indirect UV detection a contactless conductometric detector was successfully utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号