首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research aimed to study the effects of using a partial vacuum for bread baking on macromolecules and water distribution in gluten-free bread. Bread baking under partial vacuum results in greater oven rise and a larger gas fraction in the crumb. Because water's boiling point decreases under reduced pressure, it was expected that its distribution within the dough and its interactions with the others dough's constituents (mainly starch) would differ from those in bread baked under atmospheric pressure. Time-domain nuclear magnetic resonance was used, as it has the rare capacity to quantify both gelatinization and retrogradation of starch. Complementary rheological measurements made it possible to show that crumb Young's modulus was mostly influenced by the gas fraction whereas there was little change in starch gelatinization and retrogradation when dough was baked under partial vacuum. When insufficiently hydrated (48%), the volume of breads was practically the same whatever the baking process. Meanwhile, the nuclear magnetic resonance results suggested that amylose short-term crystallization (on cooling) is dependent on water content. In addition, crumb Young's modulus during storage at room temperature correlated with an increase in free induction decay signal intensity.  相似文献   

2.
The thermal performance of a gluten-free bread dough consisting of a blend of non allergenic corn and cassava starches (75:25) with hydroxypropylmethylcellulose (HPMC) as gluten mimetic hydrocolloid in conjunction with egg white (EW) was determined by differential scanning calorimetry. In order to analyse the effects of different levels of the components (water: 80-110%, HPMC: 0-2% and EW: 0-10% over the starch blend) on the thermal transitions of the dough, a Doehlert design and a response surface methodology were used.The analysis of variance showed that EW did not affect the onset temperature of gelatinisation and HPMC did not affect the peak and conclusion temperatures. HPMC-water interactions mainly controlled the onset temperature of starch gelatinisation. On the other hand, the peak and conclusion temperatures were determined by the additive and opposite effects of water and EW.  相似文献   

3.
Cyclodextrins (CDs) are cyclic oligosaccharides that have found widespread application in numerous fields. CDs have revealed a number of various health benefits, making them potentially useful food supplements and nutraceuticals. In this study, the impact of α-, β-, and γ-CD at different concentrations (up to 8% of the flour weight) on the wheat dough and bread properties were investigated. The impact on dough properties was assessed by alveograph analysis, and it was found that especially β-CD affected the viscoelastic properties. This behavior correlates well with a direct interaction of the CDs with the proteins of the gluten network. The impact on bread volume and bread staling was also assessed. The bread volume was in general not significantly affected by the addition of up to 4% CD, except for 4% α-CD, which slightly increased the bread volume. Larger concentrations of CDs lead to decreasing bread volumes. Bread staling was investigated by texture analysis and low field nuclear magnetic resonance spectroscopy (LF-NMR) measurements, and no effect of the addition of CDs on the staling was observed. Up to 4% CD can, therefore, be added to wheat bread with only minor effects on the dough and bread properties.  相似文献   

4.
A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.  相似文献   

5.
Introduction: Despite the constant efforts of scientists to improve the texture, sensory properties, and nutritional value of gluten-free bread, obtaining high bioavailability of minerals is still a huge challenge. Gluten-free bakery products are characterized by a low bioavailability of minerals. The aim of this study was to design gluten-free bread with high bioavailability of minerals commonly found in deficiencies in people struggling with gluten intolerance. Material and methods: The material consisted of gluten-free breads designed to obtain the highest possible content of minerals in the bread while maintaining a good structure and taste. Results: Higher contents of all the analyzed minerals were obtained in breads with natural and synthetic additives, both in rice and buckwheat bread, compared to basic bread. There was also a higher content of the analyzed minerals in buckwheat bread in comparison to rice bread for each type of additive. Higher bioavailability of iron, copper, calcium, and magnesium was noted in rice bread, while the bioavailability of zinc was higher in buckwheat bread. Conclusion: The additives used increased the bioavailability of the analyzed minerals from the gluten-free breads. The use of various variants of flour (rice, buckwheat) influenced the bioavailability of iron, zinc, copper, calcium, and magnesium. The release of minerals from gluten-free bread depends on the element and added components (seeds or synthetic additives).  相似文献   

6.
Thermomechanical properties of bread components can be used to characterize various events that have direct rheological impacts. The objective is to observe changes that occur during staling and toughening of a bread or similar products. In this article, characterization of bread polymers, starch and gluten, were examined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA).  相似文献   

7.
This study aimed to determine the effect of “annealing” acetylated potato starch with a homogenous granule size and various degrees of substitution on the thermal pasting characteristics (DSC), resistance to amylases, rheology of the prepared pastes, swelling power and dynamics of drug release. A fraction of large granules was separated from native starch with the sedimentation method and acetylated with various doses of acetic anhydride (6.5, 13.0 or 26.0 26 cm3/100 g starch). The starch acetates were then annealed at slightly lower temperatures than their pasting temperatures. The annealing process caused an almost twofold increase in the resistance to amylolysis and a threefold increase in the swelling power of the modified starch preparations. The heat of phase transition decreased almost two times and the range of starch pasting temperatures over two times, but the pasting temperature itself increased by ca. 10 °C. The 40 g/100 g addition of the modified starch preparation decreased the rate of drug release from a hydrogel by ca. one-fourth compared to the control sample.  相似文献   

8.
The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC), on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.  相似文献   

9.
This study aimed to utilize unripe green bananas obtained from those that were graded as unacceptable for export. Bread was selected as the product model for the application of banana flour. As carbohydrates and other functional active compounds make up the main composition of green bananas, unripe banana flour (UBF) was prepared and characterized. The chemical composition, physico-chemical properties, and functional properties of UBF, as well as its application in bread for wheat flour (WF) substitution at different levels, were investigated. Quality attributes of the bread were determined. High carbohydrate (89%), total dietary fiber (7%), ash (2%), potassium content and radical scavenging activity were found in UBF bread, while protein (15%) and fat contents (0.9%) were higher in WF bread (p < 0.05). Starch granules of different sizes and shapes (round, long and oblong) were observed in the starch from UBF bread. Solubility, swelling power, and the water absorption capacity of WF bread were greater than UBF bread (p < 0.05). The gelatinization enthalpy (ΔH) was 0.69 and 5.00 J/g for WF and UBF, respectively. The rapid viscoanalyzer (RVA) pasting profile showed that UBF bread had a higher pasting temperature, peak viscosity, breakdown, and final viscosity than WF bread (p < 0.05). Increasing the level of UBF caused an increase in bread hardness and a decrease in loaf volume (p < 0.05). We show that UBF can be considered a value-added product with health-promoting properties. The utilization of UBF as a functional food ingredient will benefit the consumer.  相似文献   

10.
Thermal properties of biocomposites   总被引:1,自引:0,他引:1  
Thermal properties of new biocomposites prepared from modified starch matrix reinforced with natural vegetable fibres were studied. DSC and TG methods were applied to study thermal behaviour of biocomposites. Biocomposites were obtained in the laboratory twin-screw extruder. Two kinds of natural fibres were used, i.e. flax and cellulose in the amount of 0–40 mass%. DSC curves of biocomposites reveal glass transition temperature, attributed to the amorphous nature of the plasticized starch matrix. In general, incorporating natural fibres into modified starch matrix leads to an increase in glass transition temperature. Thermal degradation of modified starch matrix and cellulose reinforced biocomposites proceeds in three steps, whereas the degradation process of flax reinforced biocomposites occurs in two steps. For unreinforced matrix as well as for all biocomposites, regardless of type and amount of reinforcement, the major mass loss is observed at the temperature above 300°C. The increase in thermal stability with introduction of natural fibre is observed for both flax and cellulose reinforced biocomposites.  相似文献   

11.
In recent years, scientific research on wheat gluten proteins has followed three main directions aimed at (1) finding relationships between individual genetic alleles coding for gliadins, high or low molecular weight glutenin subunits, and the viscoelastic dough properties of flour-derived products such as pasta and bread; (2) identifying prolamins and derived peptides involved in celiac disease, a pathological condition in which the small intestine of genetically predisposed individuals is reversibly damaged; and (3) developing and validating sensitive and specific methods for detecting trace amounts of gluten proteins in gluten-free foods for celiac disease patients. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of gliadins are presented, with focus on issues related to detection, identification, and quantification of intact gliadins, as well as gliadin-derived peptides relevant to the biochemical, immunological, and toxicological aspects of celiac disease.  相似文献   

12.
It was shown that the use of Burgers' model and introduction of the effective viscosity function make it possible to account for general trends in rheologic behavior of different isotropic liquid and solidlike materials: stress relaxation and strain delay, influence of loading or shear rate on a strain curve, curve hysteresis on loading and unloading, and the presence of a stress maximum and its shift at different shear rates for nonlinear-viscous systems. Generally, the rheological model consists of the binomial rheological equation and the modified Maxwell and Kelvin–Voigt differential equations. The model was tested for the case of tangential stresses when studying the polyacrylamide–aluminium acetate solutions and for the normal stresses, when studying the strain of the rock samples saturated with oil.  相似文献   

13.
The aim of the present work was to study the physicochemical properties of doubly modified, by cross-linking and acetylating, starches as well as the products of their enzymatic hydrolysis. A two step procedure of hydrolysis, including the batch and membrane reactors, were investigated. The second step of enzymatic processes were carried out in a continuous recycle membrane reactor (CRMR). Three kinds of commercial starches – two preparations of acetylated distarch adipate E1422 of different degrees of cross-linking, as well as one preparation of acetylated distarch phosphate E1414 were examined. It was found that the degree of substitution of acetyl groups in the macromolecules of starch did not influence the effectiveness of hydrolysis. However, the degree of cross-linking with adipate groups slightly decreased the efficiency of processing in the CRMR. Additionally, the relationship between the type of hydrocolloid and its adsorption activity in the air/water and oil/water systems was considered. All obtained derivatives revealed adsorption properties and reduced the surface/interface tension in the air/water and oil/water systems. The efficiency and effectiveness of adsorption of the investigated hydrocolloids were affected by the type of modification as well as the degree of substitution of acetyl groups in the macromolecules of starch. Particle size distributions formed in aqueous solutions for all investigated hydrolyses were determined and compared with results obtained for commercial products.  相似文献   

14.
The effect of bread making methods on bound water migration from crumb to crust and moisture redistribution during bread storage at room temperature was studied. Comparative analysis of water behavior in bread crusts and crumbs was performed using differential scanning calorimetry method. Water vaporization enthalpies and temperatures of water vaporization peaks were determined and compared for bread produced by a single stage, straight dough method and bread produced by a two stage, sponge-and-dough method. The effect of chitosan on the crust and the crumb properties was analyzed for the breads produced by both methods.  相似文献   

15.
Heat-moisture treatment (HMT) changed the morphology and the degree of molecular ordering in lotus rhizome (Nelumbo nucifera Gaertn.) starch granules slightly, leading to some detectable cavities or holes near hilum, weaker birefringence and granule agglomeration, accompanied with modified XRD pattern from C- to A-type starch and lower relative crystallinity, particularly for high moisture HMT modification. In contrast, annealing (ANN) showed less impact on granule morphology, XRD pattern and relative crystallinity. All hydrothermal treatment decreased the resistant starch (from about 27.7–35.4% to 2.7–20%), increased the damage starch (from about 0.5–1.6% to 2.4–23.6%) and modified the functional and pasting properties of lotus rhizome starch pronouncedly. An increase in gelatinization temperature but a decrease in transition enthalpy occurred after hydrothermal modification, particularly for hydrothermal modification involved with HMT. HMT-modified starch also showed higher pasting temperature, less pronounced peak viscosity, leading to less significant thixotropic behavior and retrogradation during pasting-gelation process. However, single ANN treatment imparts a higher tendency of retrogradation as compared to native starch. For dual hydrothermally modified samples, the functional properties generally resembled to the behavior of single HMT-modified samples, indicating the pre- or post-ANN modification had less impact on the properties HMT modified lotus rhizome starch.  相似文献   

16.
Cricket powder, described in the literature as a source of nutrients, can be a valuable ingredient to supplement deficiencies in various food products. Work continues on the implementation of cricket powder in products that are widely consumed. The aim of this study was to obtain gluten-free bread with a superior nutritional profile by means of insect powder addition. Gluten-free breads enriched with 2%, 6%, and 10% of cricket (Acheta domesticus) powder were formulated and extensively characterized. The nutritional value, as well as antioxidant and β-glucuronidase activities, were assessed after simulated in vitro digestion. Addition of cricket powder significantly increased the nutritional value, both in terms of the protein content (exceeding two-, four-, and seven-fold the reference bread (RB), respectively) and above all mineral compounds. The most significant changes were observed for Cu, P, and Zn. A significant increase in the content of polyphenolic compounds and antioxidant activity in the enriched bread was also demonstrated; moreover, both values additionally increased after the digestion process. The total polyphenolic compounds content increased about five-fold from RB to bread with 10% CP (BCP10), and respectively about three-fold after digestion. Similarly, the total antioxidant capacity before digestion increased about four-fold, and after digestion about six-fold. The use of CP also reduced the undesirable activity of β-glucuronidase by 65.9% (RB vs. BCP10) in the small intestine, down to 78.9% in the large intestine. The influence of bread on the intestinal microflora was also evaluated, and no inhibitory effect on the growth of microflora was demonstrated, both beneficial (Bifidobacterium and Lactobacillus) and pathogenic (Enterococcus and Escherichia coli). Our results underscore the benefits of using cricket powder to increase the nutritional value and biological activity of gluten-free food products.  相似文献   

17.
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.  相似文献   

18.
A mixture design of experiment approach was followed to explore formulation effects on the technological properties of wheat flours optimized for industrial bread-making purposes. Ten different flour mixtures were investigated by means of near infrared spectroscopy (NIRS) to obtain information on flour performance in a critical phase such as dough leavening. For each mixture, a laboratory-scale bread making experiment was carried out according to a standardized recipe and the leavening phase of each dough sample was monitored by means of NIRS at different times. Parallel factor analysis (PARAFAC) was used to highlight the existence of differences among the mixtures on the basis of NIR spectrum variability with respect to the leavening time. Additionally, the relationship among the 3-way NIR dataset and some parameters measured on the baked bread loaves (dimensions, volume, weight) was investigated by means of the n-way extension of partial least squares regression (nPLS), in order to evaluate product properties from its leavening step and mixture formulation. The results give better insight on the relationships among wheat flour formulation and its performance in the leavening phase and as far as some properties of the final product are concerned, thus offering a way to monitor the leavening phase and give information on its influence on the final product properties.  相似文献   

19.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   

20.
This work aimed to evaluate the physical, chemical and antioxidant properties of Ceiba aesculifolia subsp. parvifolia (CAP) tuber and determinate rheological, thermal, physicochemical and morphological properties of the starch extracted. The CAP tuber weight was 3.66 kg; the edible yield was 82.20%. The tuber presented a high hardness value (249 N). The content of carbohydrates (68.27%), crude fiber (15.61%) and ash (9.27%) from the isolated starch, reported in dry weight, were high. Phenolic compounds and flavonoid content of CAP tuber peel were almost 3-fold higher concerning the pulp. CAP tuber starch exhibited a pseudoplastic behavior and low viscosity at concentrations of 5–15%. Purity percentage and color parameters describe the isolated starch as high purity. Thermal characteristics indicated a higher degree of intermolecular association within the granule. Pasting properties describes starch with greater resistance to heat and shear. CAP tuber starch has X-ray diffraction patterns type A. The starch granules were observed as oval and diameters ranging from 5 to 30 µm. CAP tuber could be a good source of fiber and minerals, while its peel could be used for extracting bioactive compounds. Additionally, the starch separated from this tuber could be employed as a thickening agent in food systems requiring a low viscosity and subjected to high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号