首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of sialic acid in living systems is of importance for the diagnosis of several types of malignancy. We have designed and synthesized two new lanthanide ion ligands (L1 and L2) that are capable of molecular recognition of sialic acid residues. The basic structure of these ligands consists of a DTPA-bisamide (DTPA, diethylenetriamine pentaacetic acid) whose amide moieties each bear both a boronic function for interaction with the diol groups in the side chain of sialic acid, and a functional group that is positively charged at physiologic pH values and is designed to interact with the carboxylate anion of sialic acid. The relaxometric properties of the Gd3+ complexes of these two ligands were evaluated. The relaxivity of the GdL1 complex has a significant second-sphere contribution at pH values above the pKa of its phenylboronic acid moiety. The interaction of the Gd3+ complexes of L1 and L2 with each of several saccharides was investigated by means of a competitive fluorescent assay. The results show that both complexes recognize sialic acid with good selectivity in the presence of other sugars. The adduct formed by GdL2 with sialic acid has the higher conditional formation constant (50.43+/-4.61 M(-1) at pH 7.4). The ability of such complexes to recognize sialic acid was confirmed by the results of a study on the interaction of corresponding radiolabeled complexes (153SmL1 and 153SmL2) with C6 glioma rat cells. 153SmL2 in particular is retained on the cell surface in significant amounts.  相似文献   

2.
Two different sialic acid containing glycopeptide (sialopeptide) libraries were synthesized using the portion mixing method and ladder synthesis. The libraries were attached via an IMP spacer and a photolabile linker to PEGA(1900) resin in order to facilitate rapid and unambiguous structural analysis of hits by MALDI-TOFMS. One library contained a lactamized sialic acid moiety at the N terminus of a pentapeptide, while a second library displayed a sialic acid residue at the center of a heptapeptide. The sialopeptide libraries were screened against the recombinant binding domain (SnD1) of a sialic acid binding Ig-like protein, sialoadhesin (Siglec-1). No ligands were identified from the lactamized sialic acid library, underscoring the importance of the carboxylic acid moiety for binding. Screening of the second gave few distinct hits (approximately 0.03% of library) with a high consensus. The high-affinity ligands contained, in most cases, a WG motif following the sialylated Thr. The strength of binding of selected ligands was determined by surface plasmon resonance. The best sialopeptide ligand, WLLT(Sa)WGT, exhibited micromolar affinity of SnD1; >10 times the affinity of SnD1 to 3'-sialyl lactose.  相似文献   

3.
The interaction of sialyl Lewis(x), Lewis(x), and alpha-L-Fuc-(1-->3)-beta-D-GlcNAc with isolectin A from Lotus tetragonolobus (LTL-A), and with Aleuria aurantia agglutinin (AAA) was studied using NMR experiments and surface plasmon resonance. Both lectins are specific for fucose residues. From NMR experiments it was concluded that alpha-L-Fuc-(1-->3)-beta-D-GlcNAc and Lewis(x) bound to both lectins, whereas sialyl Lewis(x) only bound to AAA. Increased line broadening of 1H NMR signals of the carbohydrate ligands upon binding to AAA and LTL-A suggested that AAA bound to the ligands more tightly. Further comparison of line widths showed that for both lectins binding strengths decreased from alpha-L-Fuc-(1-->3)-beta-D-GlcNAc to Lewis(x) and were lowest for sialyl Lewis(x). Surface plasmon resonance measurements were then employed to yield accurate dissociation constants. TrNOESY, QUIET-trNOESY, and trROESY experiments delivered bioactive conformations of the carbohydrate ligands, and STD NMR experiments allowed a precise epitope mapping of the carbohydrates bound to the lectins. The bioactive conformation of Lewis(x) bound to LTL-A, or AAA revealed an unusual orientation of the fucose residue, with negative values for both dihedral angles, phi and psi, at the alpha(1-->3)-glycosidic linkage. A similar distortion of the fucose orientation was also observed for sialyl Lewis(x) bound to AAA. From STD NMR experiments it followed that only the L-fucose residues are in intimate contact with the protein. Presumably steric interactions are responsible for locking the sialic acid residue of sialyl Lewis(x) in one out of many orientations that are present in aqueous solution. The sialic acid residue of sialyl Lewis(x) bound to AAA adopts an orientation similar to that in the corresponding sialyl Lewis(x)/E-selectin complex.  相似文献   

4.
Four glycodendrons and a glycocluster were synthesized from carbohydrate building blocks to form paucivalent (di- to tetravalent) structures of controlled scaffold architectures. Enzymatic sialylation of the functionalized cluster and dendrons, terminated in lactose residues, generated a library of paucivalent synthetic sialosides displaying sialic acids with different dispositions. These newly constructed bioactive sialic acid-based structures were differentially recognized by sialoadhesin, a mammalian macrophage sialic acid binding protein. The binding of the sialosides to sialoadhesin was evaluated by an enzyme-linked immunosorbant assay to investigate the complementarity of scaffold structure and binding to sialoadhesin. Modulating the interaction between sialoadhesin and its sialic acid ligands has important implications in immunobiology.  相似文献   

5.
Kim D  Paek JH  Jun MJ  Lee JY  Kang SO  Ko J 《Inorganic chemistry》2005,44(22):7886-7894
Aromatic molecular "clips" bearing two symmetrically bound platinum moieties have been prepared. The molecular "clip" 4 readily self-assembled with linear linkers such as 4,4'-bipyridyl, 1,4-bis[2-(4-isocyano-3,5-diisopropylphenyl)ethynyl]benzene, and nicotinic acid to form molecular rectangles. The overall dimensions of the rectangle 7 were 7.3 Angstroms x 15.3 Angstroms. The molecular "clip" also self-assembled with tritopic pyridyl and isocyanide ligands to form trigonal prismatic frameworks. The characterization of the supramolecules by multinuclear NMR, electrospray mass spectrometry, and X-ray crystal structures is also reported.  相似文献   

6.
Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.  相似文献   

7.
唾液酸类化合物的合成研究进展   总被引:12,自引:0,他引:12  
综述了近年来在唾液酸及其衍生物、类似物的设计、合成,以及它们作为唾液 酸酶抑制剂等相关的生物学应用方面的研究进展。  相似文献   

8.
The siglec family of sialic acid binding proteins participates in diverse cell surface biology that includes regulation of immune cell signaling and the interaction of neuronal cells with glial cells. The weak intrinsic affinity of the natural sialoside ligands has hampered the development of synthetic ligand based probes needed to elucidate their roles in siglec function. In this report, we describe a glycan microarray comprising a library of 9-acyl-substituted sialic acids incorporated into sialosides containing the Neu5Acalpha2-3Gal and Neu5Acalpha-6Gal linkages commonly recognized by the siglecs. The array is demonstrated to exhibit utility for detecting 9-acyl substituents that increase the affinity of siglecs for their ligands. Substituents that increase affinity are anticipated to be useful for the design of high affinity ligand based probes of siglec function.  相似文献   

9.
The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.  相似文献   

10.
A new saturation transfer difference 1D-TOCSY NMR experiment that allows the investigation of complex ligands interacting with proteins and its application in the mapping of which portions of oligosaccharide ligands (epitope) interact with a complementary antibody are described. The interaction between trisaccharide and hexasaccharide ligands, corresponding to fragments of the cell-wall polysaccharide of Streptococcus Group A, and a monoclonal antibody directed against the polysaccharide is investigated at the molecular level. The polysaccharide consists of alternating alpha-(1-->2) and alpha-(1-->3) linked L-rhamnopyranose (Rha) residues with branching N-acetyl-D-glucopyranosylamine (GlcNAc) residues linked beta-(1-->3) to alternate rhamnopyranose rings. The epitope is proven to consist not only of the immunodominant GlcNAc sugar but also of an entire branched trisaccharide repeating unit. The experimental NMR data serve to check and validate the computed models of the oligosaccharide-antibody complexes.  相似文献   

11.
Sialic acid is the terminal sugar found on most glycoproteins and is crucial in determining serum half-life and immunogenicity of glycoproteins. Sialic acid analogs are antiviral therapeutics as well as crucial tools in bacterial pathogenesis research, immunobiology and development of cancer diagnostic imaging. The scarce supply of sialic acid hinders production of these materials. We have developed an efficient, rapid and cost effective fermentation route to access sialic acid. Our approach uses low cost feedstock, produces an industrially relevant amount of sialic acid and is scalable to manufacturing levels. We have also shown that precursor directed biosynthesis can be used to produce a N-acyl sialic acid analog. This work demonstrates the feasibility of engineering manufacturing-friendly bacteria to produce complex, unavailable small molecules.  相似文献   

12.
CD22 is a B cell-specific sialic acid-binding immunoglobulin-like lectin (Siglec) whose function as a regulator of B cell signaling is modulated by its interaction with glycan ligands bearing the sequence NeuAc alpha2-6Gal. To date, only highly multivalent polymeric ligands (n = 450) have achieved sufficient avidity to bind to CD22 on native B cells. Here we demonstrate that a synthetic bifunctional molecule comprising a ligand of CD22 linked to an antigen (nitrophenol; NP) can use a monoclonal anti-NP IgM as a decavalent protein scaffold to efficiently drive assembly of IgM-CD22 complexes on the surface of native B cells. Surprisingly, anti-NP antibodies of lower valency, IgA (n = 4) and IgG (n = 2), were also found to drive complex formation, though with lower avidity. Ligands bearing alternate linkers of variable length and structure were constructed to establish the importance of a minimal length requirement, and versatility in the structural requirement. We show that the ligand drives assembly of IgM complexes exclusively on the surface of B cells and not other classes of white blood cells that do not express CD22, which lends itself to the possibility of targeting B cells in certain hematopoietic malignancies.  相似文献   

13.
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.  相似文献   

14.
Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP‐STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2O/H2O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP‐STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.  相似文献   

15.
The chemoenzymatic synthesis of 13C-labeled sialic acid (NeuAc) and 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (KDN) as useful molecular probes for studying the conformation of sialyl or KDN oligosaccharides attached to proteins was performed by using [6-13C]-ManNAc, [6-13C]-Man and [3-13C]-pyruvic acid sodium salt. In the synthesis of the compounds, 5,6-anhydro intermediates were found to easily provide not only 6-13C-labeled but also 5-, and 6-modified NeuAc and KDN analogs. Furthermore, it was demonstrated that identical results are obtained by NMR for both [3,9-13C]-NeuAc and 1:1 mixtures of [3-13C]- and [9-13C]-NeuAc.  相似文献   

16.
The construction of chirally twisted porphyrin-based molecular capsule 6 and polymeric capsule 8 was investigated by means of scanning electron microscopy (SEM) and (1)H NMR, UV-visible, and CD spectroscopic observations. Molecular capsule 6 and polymeric capsule 8 were constructed by the reaction of chiral cis-Pd(II) complex 4 bearing a (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) ligand with porphyrin 1 bearing four pyridyl groups and porphyrin 2 bearing eight pyridyl groups, respectively. The peak-splitting pattern of the beta-pyrrole protons in the (1)H NMR spectrum and the specific CD spectral pattern bearing an exciton coupling band indicate that both molecular capsule 6 and polymeric capsule 8 are chirally twisted. Moreover, it was found that the CD intensity of the polymeric capsule plotted against [4]/([4] + [3]) shows a sigmoidal curvature, reflecting a unique cooperativity among the ligand groups; that is, the ligand existing in excess over the other dominates the twisting direction. These results consistently demonstrate that "chirality" in these molecular assembly systems is conveniently controlled by the use of chiral ligands.  相似文献   

17.
Sialyl Lewis X (1) is known to be a ligand of the cell adhesion molecule E-selectin. We have synthesized several biantennary glycoside-terminated ligands mimicking sialyl Lewis X (1), and evaluated their binding activity to E-selectin using HL-60 cells expressing sialyl Lewis X epitope and human umbilical vein endothelial cells (HUVECs). These compounds were found to possess moderate binding activities to E-selectin. Among them, di-fucoside analog (8) which has no sialic acid carboxylate group was more active than 2, which had both the sialyl-galactose residue and the fucose residue (IC50, 8: 4.7 mM, 2: 11.7 mM). Furthermore, in the rat pleuritic model in vivo induced by carrageenin, 8 was found to reduce neutrophil infiltration at inflammatory lesions.  相似文献   

18.
Palladium complexes bearing monodentate and bidentate phosphine ligands (1-7) were synthesised and used as catalyst precursors in the methoxycarbonylation of norbornene. The catalytic systems bearing ligands 1, 3 and 4 afforded excellent conversions (>99%) and selectivity of the ester (>99%). NMR investigations showed that using complex 1a as the precursor resulted in the protonated phosphine, 1-H(+), being formed under catalytic conditions and thus the addition of acid is not required for the activation of this system since the reaction involving the precursor with methanol under CO pressure produces 2 equivalents of HCl and leads to the formation of the active species. The protonation of ligand 4 under methoxycarbonylation conditions was also observed and the diprotonated diphosphine was isolated and characterised. This compound was tested as a ligand and acid source in a catalysis and provided excellent conversion and high selectivity to the ester.  相似文献   

19.
The supramolecular interactions of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP have been investigated using (1)H and (31)P NMR spectra. Furthermore, the hydrolysis of ATP catalyzed by Mg(ii) and TAME has been studied at 60 degrees C and pH 7 using (31)P NMR spectra. In the Mg(ii)-ATP-TAME ternary system, the binding interaction of Mg(2+) with ATP involves not only N1 and N7 in the adenine ring but also beta- and gamma-phosphate of ATP. The binding forces are mainly electrostatic interaction and cation (Mg(2+))-pi interaction. The guanidinium group and the aromatic ring of TAME interacts with ATP by beta and gamma phosphate and the adenine ring of ATP. The binding forces are mainly electrostatic interactions and pi-pi stacking. A significant difference between the binary and the ternary system indicates that TAME is essential to the stablization of the intermediate. Kinetic studies show that the hydrolysis rate constant of ATP is 2.16 x 10(-2) h(-1) at pH 7 in the Mg(ii)-TAME-ATP ternary system. The Mg(ii) ion and TAME can accelerate the ATP hydrolysis process. A possible mechanism has been proposed that the hydrolysis occurs through an addition-elimination, in which the phosphoramidate intermediate was observed at 3.21 ppm in the (31)P NMR of the ternary system. These results provide further information concerning the effect of the key amino acid residue and metal ions as cofactors of ATPase on ATP synthesis/hydrolysis at the molecular level.  相似文献   

20.
Gadolinium complexes linked to an apolar fragment are known to be efficiently internalized into various cell types, including hepatocytes. Two lipid-functionalized gadolinium chelates have been investigated for the targeting of the human liver fatty acid binding protein (hL-FABP) as a means of increasing the sensitivity and specificity of intracellular-directed MRI probes. hL-FABP, the most abundant cytosolic lipid binding protein in hepatocytes, displays the ability to interact with multiple ligands involved in lipid signaling and is believed to be an obligate carrier to escort lipidic drugs across the cell. The interaction modes of a fatty acid and a bile acid based gadolinium complex with hL-FABP have been characterized by relaxometric and NMR experiments in solution with close-to-physiological protein concentrations. We have introduced the analysis of paramagnetic-induced protein NMR signal intensity changes as a quantitative tool for the determination of binding stoichiometry and of precise metal-ion-center positioning in protein-ligand supramolecular adducts. A few additional NMR-derived restraints were then sufficient to locate the ligand molecules in the protein binding sites by using a rapid data-driven docking method. Relaxometric and (13)C NMR competition experiments with oleate and the gadolinium complexes revealed the formation of heterotypic adducts, which indicates that the amphiphilic compounds may co-exist in the protein cavity with physiological ligands. The differences in adduct formation between fatty acid and bile acid based complexes provide the basis for an improved molecular design of intracellular targeted probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号