首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
聚偏氟乙烯膜改性方法研究进展   总被引:1,自引:0,他引:1  
朱腾义  严和婷  李毛 《化学通报》2018,81(12):1089-1095
膜污染是聚偏氟乙烯(PVDF)膜在污水处理工程应用中的主要障碍,膜亲水改性是改善膜污染的主要方法。本文根据改性方法的异同,按照表面涂覆、表面接枝、共混改性、共聚改性等方法进行了综述。通过分析不同改性方法对PVDF亲水效果、渗透能力、抗污能力及长期有效性等方面的影响,讨论了各种改性方法的优缺点,为PVDF膜处理的应用提供技术和理论支持。  相似文献   

2.
采用等离子体引发的可逆加成-断裂链转移(RAFT)接枝聚合法,以甲基丙烯酸羟乙酯(HEMA)为单体,对聚丙烯(PP)多孔膜表面作了亲水改性.研究了接枝聚合动力学,并以FT-IR、SEM、压汞、水通量等方法研究了改性膜的表面结构形态及孔结构.结果表明,等离子体引发的RAFT接枝聚合速率显著低于普通等离子体引发的接枝聚合速率.表面接枝率随着接枝聚合时间的延长呈线性增长趋势,同时改性膜的孔径和水通量随之减小.  相似文献   

3.
采用超声辅助接枝聚合技术, 将甲基丙烯酸缩水甘油酯(GMA)接枝到聚偏氟乙烯(PVDF)膜表面, 制备PVDF-g-GMA膜; 再利用氨基诱导环氧基团发生开环反应, 将苏氨酸(Thr)接枝到PVDF-g-GMA膜表面, 制备了具有两性离子结构表面的PVDF-g-GMA-Thr膜. 通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)、 X射线光电子能谱(XPS)、 接触角测试仪、 场发射扫描电子显微镜(FESEM)和牛血清白蛋白(BSA)过滤实验等系统研究了改性前后PVDF膜表面的化学组成、 润湿性能、 表面形貌和抗污染性能. 研究结果表明, 随着PVDF-g-GMA接枝Thr反应时间的增加, PVDF-g-GMA-Thr膜的亲水性能明显提高, 接触角从90°降为0°, 呈现出超亲水性能. 同时PVDF-g-GMA-Thr膜的水通量明显提高, 当Thr诱导开环反应时间为12 h时, PVDF-g-GMA-Thr膜的水通量高达686 L/(m 2·h), 与PVDF原膜相比, 水通量提高了204.5%. 在BSA的过滤测试中, 与PVDF膜相比, PVDF-g-GMA-Thr膜呈现出良好的截留性能和抗污染性能, BSA截留率从42%提高到84%,水通量恢复率从53%提高到87%, 不可逆污染率从47%降到12%, 表明通过接枝Thr构筑两性离子结构表面可以有效减小膜污染.  相似文献   

4.
邓璐遥  李少路  秦一文  胡云霞 《化学进展》2020,32(12):1895-1907
由活性层和支撑层组成的薄层复合(TFC)聚酰胺(PA)膜,是目前广泛应用于纳滤、反渗透、正渗透和压力延迟渗透过程中的高性能脱盐膜,具有水通量大和截盐率高等优异性能。然而,由于TFC-PA膜存在活性层疏水性强、支撑层孔径大等特点,致使TFC-PA膜在实际使用过程中极易受到膜污染,制约了TFC-PA膜的进一步推广和使用。本文讨论分析了TFC-PA膜的结构特点和表面性质,总结归纳了在不同膜过程中TFC-PA膜污染形成的原因及特点,详细论述了国内外抗污染TFC-PA膜的研究进展。本文重点介绍了活性层抗污染改性和支撑层抗污染改性方法,并对其抗污染机理以及存在的问题进行了阐述与分析,最后对抗污染TFC-PA膜的结构设计与表面改性策略进行了总结及展望。  相似文献   

5.
采用远程动态Ar等离子体流对聚乙烯(PE)中空纤维膜组件进行整体活化-诱导接枝丙烯酸(AA),制得亲水性能持久的PE中空纤维膜组件(PE-g-AA).这种膜表面等离子体化学改性工艺具有高效、环境友好和表面无(低)损伤等特点.大量—COOH基团的引入使得PE-g-AA组件膜丝外表面的水接触角从120°降至50°左右,且PE-g-AA膜表面的化学结构和物理形貌沿膜丝轴向变得更为均匀;在为期120 d的膜性能老化实验中,经过7次纯水过滤后,PE-g-AA组件的稳态纯水通量仍为原膜的1.5倍左右,水接触角仅恢复约8°,表明PE-g-AA膜组件具有良好亲水稳定性;同时PE-g-AA组件表现出良好的抗牛血清白蛋白污染性,清洗后其纯水通量可恢复到污染前的82%.  相似文献   

6.
磷酸化P-mCMC/mCS双极膜的制备及其性能的研究   总被引:1,自引:0,他引:1  
以五氧化二磷,磷酸三乙酯和磷酸为反应剂,制备了磷酸化羧甲基纤维素(CMC),经Fe3+改性后用作为阳膜;以壳聚糖(CS)和聚乙烯醇共混物用戊二醛改性后用作为阴膜溶胶,将阴膜溶胶流延于阳膜上,制备了P-mCMC/mCS双极膜。测定了CS、CMC胶体的电荷密度,离子透过率,P-mCMC/mCS双极膜的红外光谱与离子交换能力。IR与接触角测定的结果表明,CMC经改性后其亲水性能得到了显著提高。膜交流阻抗、I-V工作曲线的测定结果表明该双极膜阻抗及工作电压均较小。  相似文献   

7.
分别使用十二烷基三甲氧基硅烷(DMS)和硬脂酸(STA)对α-Al2O3载体上二次生长合成的silicalite-1膜进行修饰,提高其表面疏水性。红外光谱和接触角测试结果表明,改性剂以化学键的形式结合于分子筛膜表面,膜表面由亲水变为疏水。表面改性的最佳预处理温度为150℃,改性剂的最佳质量分数为10%。进一步研究了膜表面润湿特性和热稳定性,其中DMS改性后的分子筛膜在空气中经250℃高温处理后仍保持疏水性不变。在乙醇/水分离应用中,高温脱除模板剂后缺陷的孔径分布在1~5nm,表面改性后乙醇分离因子较改性前提高5倍,最高可达21.6。  相似文献   

8.
在水溶液中将聚六亚甲基单胍盐酸盐(PHGH)共价接枝在经多巴胺自聚合改性的聚砜膜表面, 制备具有抗菌性能的纳滤膜. 采用全反射红外光谱(ATR-FTIR)、 扫描电子显微镜(SEM)和接触角测试考察膜表面的结构、 形貌和亲水性变化. 探讨PHGH含量对膜的接枝度及分离性能的影响, 并对膜的抗菌性能进行了评价. 结果表明, 经过多巴胺的自聚合和表面接枝PHGH后, 聚砜膜表面形成了具有纳滤分离性能的活性层, 并且膜表面亲水性得到改善. 随着PHGH含量的增大, 膜的纯水通量降低, 而对无机盐和染料的截留性能提高. 接枝后的复合膜具有较高的抗菌性能, 当PHGH含量为3%(质量分数)时, 抗菌率可达98.5%.  相似文献   

9.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

10.
熊日华 《大学化学》2002,17(2):44-44
材料的亲液性 (亲水或亲油 )是许多领域对材料特性考察的一个重要方面。如纤维的亲水性与纤维制品的服用性能有密切关系 ,亲水性纤维制成的内衣能增加穿着舒适感[1] ;又如 ,在膜分离的核心技术———反渗透 (RO)、超滤 (UF)和微滤 (MF)中 ,采用具有亲水性表面的膜能显著减少膜污染 ,延长膜的使用寿命[2 ] ;此外 ,填料床中的填料以及浮选过程中的矿粒等的亲液性都对相关过程影响重大。  对于材料的亲液性 ,不少人有这样一种认识 ,即亲水的材料必定是疏油的 ,反之亦然。但仔细考察材料亲水亲油现象发生的本质 ,就会发现并非任何材料都…  相似文献   

11.
侯淑华  郑吉富  董雪 《应用化学》2017,34(6):644-648
膜分离技术广泛应用于水处理、医药、食品、化工等领域。但在膜使用过程中,膜容易被蛋白质和细菌所污染,降低了膜的分离性能和使用寿命,提高了膜技术的应用成本,极大的限制了膜的应用。本文以含羧基的酚酞聚芳醚酮(PEK-COOH)制备超滤膜,利用1-乙基-(3-二甲基氨基丙基)碳酰二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)方法将碱性氨基酸赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)接枝至超滤膜表面。实验结果表明,接枝氨基酸后水通量增加,静态蛋白吸附量降低,同时接枝组氨酸的超滤膜过滤牛血清白蛋白(BSA)3个循环后水通量恢复率达80%,表现出良好的抗污染性能。  相似文献   

12.
Biofouling in microfluidic devices limits the type of samples which can be handled and the duration for which samples can be manipulated. Despite the cost of disposing fouled devices, relatively few strategies have been developed to tackle this problem. Here, we have analyzed a series of eight amphiphilic droplet additives, Pluronic coblock polymers of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO), as a solution to biofouling in digital microfluidics using serum-containing cell culture media as a model fluid. Our analysis shows that species with longer PPO chains are superior for enabling droplet motion and reducing biofouling. Two of the tested species, L92 and P105, were found to lengthen device lifetimes by 2-3 times relative to additives used previously when used at optimal concentrations. Pluronics with low PEO content such as L92 were found to be cytotoxic to an immortalized mammalian cell line, and therefore we recommend that Pluronic additives with greater or equal to 50% PEO composition, such as P105, be used for digital microfluidic applications involving cells. Finally, contact angle measurements were used to probe the interaction between Pluronic-containing droplets and device surfaces. Strong correlations were found between various types of contact angle measurements and the capacity of additives to reduce biofouling, which suggests that contact angle measurements may be useful as a tool for rapidly screening new candidates for the potential to reduce biofouling. We propose that this study will be useful for scientists and engineers who are developing digital microfluidic platforms for a wide range of applications involving protein-containing solutions, and in particular, for applications involving cells.  相似文献   

13.
Porous hydrogels such as agarose are commonly used to analyze DNA and water-soluble proteins by electrophoresis. However, the hydrophilic environment of these gels is not suitable for separation of important amphiphilic molecules such as native membrane proteins. We show that an amphiphilic liquid crystal of the lipid monoolein and water can be used as a medium for electrophoresis of amphiphilic molecules. In fact, both membrane-bound fluorescent probes and water-soluble oligonucleotides can migrate through the same bicontinuous cubic crystal because both the lipid membrane and the aqueous phase are continuous. Both types of analytes exhibit a field-independent electrophoretic mobility, which suggests that the lipid crystal structure is not perturbed by their migration. Diffusion studies with four membrane probes indicate that membrane-bound analytes experience a friction in the cubic phase that increases with increasing size of the hydrophilic headgroup, while the size of the membrane-anchoring part has comparatively small effect on the retardation.  相似文献   

14.
Fouling of cellulose triacetate(CTA) forward osmosis(FO) membranes by natural organic matter(NOM) was studied by means of a cross-flow flat-sheet forward osmosis membrane system. The NOM solution was employed as the feed solution(FS), and a sodium chloride solution(3 mol/L) was used for the draw solution(DS). The process was conducted at various temperatures and cross-flow velocities. The flux decline was investigated with 3 h forward osmosis operation. The substances absorbed on the membranes were cleaned by ultrasonic oscillation of the fouled membranes and were characterized by methodologies including fluorescence excitation-emission matrices (EEMs) and liquid chromatography with an organic carbon detector(LC-OCD), and the variations of membrane properties were also investigated by Fourier transform infrared spectrometer(FTIR) and a contact angle meter. It was noted that the rejection efficiency of NOM is remarkable and that ultrasonic oscillation is an effective method to extract the NOM fouled on the CTA membranes after FO process. A higher cross-flow velocity and lower temperature benefit the anti-fouling capacity of the membrane significantly. Although humic substances accounted for the majo- rity of the NOM, aromatic proteins and amino acids were the main fouling components on the membranes, with symbolic FTIR peaks at 2355, 1408 and 873 cm-1. The present surface foulant made the membranes becoming more hydrophilic, as demonstrated by a significant decrease in contact angle(ranging from 20% to 46%) under all the operation conditions.  相似文献   

15.
In this study, hydrophilic and fouling-resistant polysulfone (PS) membranes were fabricated using the phase inversion method to reduce membrane fouling caused by microalgal culture. The Pluronic F-127 polymer, which is used as a hydrophilic co-polymer, was added to the membranes to improve the membrane properties. Characteristic specifications of the fabricated membranes, such as morphology, surface roughness, chemical structures and hydrophobicity/hydrophilicity, were studied using scanning electron microscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), attenuated total reflection-fourier infrared (ATR-FTIR) spectroscopy and contact angle devices. According to the results obtained, it was observed that, with the increase of the Pluronic F-127 concentration in the membranes, the surface roughness of the membranes decreased and hydrophilicity and permeation fluxes increased notably. Furthermore, it was observed that the addition of the Pluronic F-127 polymer into the membranes reduced reversible/irreversible membrane fouling. Additionally, a characterisation of the fouled membranes was performed for the purpose of comprehensively understanding the membrane fouling mechanism caused by microalgal culture.  相似文献   

16.
The importance of solute adsorption in the biofouling membrane has been clearly verified for the performance of membrane bioreactor (MBR). In order to quantify the mechanism of static adsorption in biofouling during of MBR process, we characterize membrane biofouling caused by model solutions containing a protein (bovine serum albumin, BSA), a humic substance (humic acid, HA) and a polysaccharide (alginic acid, Alg) on commercial hydrophilic polyethersulfone (PES) membrane. For static adsorption experiments, membranes were immersed in well-defined model solutions in three temperatures (298, 308 and 318 K) to obtain equilibrium data. To determine the characteristic parameters for this process, 7 isotherm models were applied to the experimental data. Three error analysis methods; the coefficient of nonlinear regression (R(2)), the sum of the squared errors (SSE) and standard deviation of residuals (S(yx)), were used to evaluate the data and determine the best fit isotherm for each model solutions. The error values demonstrated that the Sips isotherm model provided the best fit to the experimental data. AFM images were used for determination of changes in membrane surface after adsorption. These images confirmed the results obtained from adsorption isotherm study. Thermodynamic parameters such as standard free energy (Δ(r)G(θ)), enthalpy (Δ(r)H(θ)) and entropy (Δ(r)S(θ)) changes were determined; these adsorption processes were found to be feasible and endothermic but not spontaneous. The distribution of the substances adsorbed on PES surface were more chaotic than that in the aqueous solutions. Parameters obtained in this study can be used to determine the "fouling potential" of a given feed stream and a membrane.  相似文献   

17.
Functional hydrophilic microspheres (latex particles) have found various applications in life sciences and in medicine - particularly in latex diagnostic tests. This paper presents a comprehensive review of studies on latex particles with a hydrophilic interfacial layer composed of various hydrophilic polymers with reactive groups at the ends of macromolecules or at each monomeric unit along the chain. Typical examples of these hydrophilic polymers are poly(2-hydroxyethyl methyl methacrylate), poly(acrylic acid), poly(N,N-dimethylacrylamide), polysaccharides, poly(ethylene oxide) and polyglycidol. Hydrophilic microspheres with different morphologies (uniform or core-shell, see Figure) have been synthesized by emulsion and dispersion polymerizations. The chemical structure of polymers which constitute the interfacial layer of microspheres has been investigated using a variety of instrumental techniques (such as XPS, SSIMS and NMR) and analytical methods based on specific chemical reactions suitable for the determination of particular functional groups. Microspheres are exposed to contact with proteins in the majority of medical applications. This paper presents examples of studies on the attachment of these biomacromolecules to microspheres. The relation between the structure of the interfacial layer of microspheres and the ability of these particles for the covalent binding of proteins is discussed. Several examples of diagnostic tests, in which hydrophilic microspheres with adsorbed or covalently immobilized proteins were used as reagents, are presented. The paper also contains a short review of the application of magnetic hydrophilic particles for protein separation. Examples of hydrophilic latex particles used for hemoperfusion or heavy metal ion separation are presented. Hydrophilic microspheres with uniform or core-shell morphologies.  相似文献   

18.
This study addresses problems encountered with an emulsion/membrane bioreactor. In this reactor, enzyme- (lipase) catalyzed hydrolysis in an emulsion was combined with two in-line separation steps. One is carried out with a hydrophilic membrane, to separate the water phase, the other with a hydrophobic membrane, to separate the oil phase. In the absence of enzyme, sunflower oil/water emulsions with an oil fraction between 0.3 and 0.7 could be separated with both membranes operating simultaneously. However, two problems arose with emulsions containing lipase. First, the flux through both the hydrophilic and the hydrophobic membranes decreased with exposure to the enzyme. Second, the hydrophobic membrane showed a loss of selectivity demonstrated by permeation of both the oil phase and the water phase through the hydrophobic membrane at low transmembrane pressure. These phenomena can be explained by protein (i.e. lipase) adsorption to the polymer surface within the pores of the membrane. It was proven that lipase was present at the hydrophilic membrane and that this, in part, explains the flux decrease of the hydrophilic membrane. To prevent the observed loss of selectivity with exposure to protein, the hydrophobic polypropylene membrane (Enka) was modified with block copolymers of propylene oxide (PO) and ethylene oxide (EO). These block copolymers act as a steric hindrance for proteins that come near the surface. The modification was successful: After 10 days of continuous operation the minimum transmembrane pressure at which water could permeate through an F 108-modified membrane was 0.5 bar, the same value as that observed in the beginning of the experiment. This indicates that loss of selectivity due to protein adsorption is prevented by the modification of the membrane.  相似文献   

19.
The material-tissue interaction that results from sensor implantation is one of the major obstacles in developing viable, long-term implantable biosensors. Strategies useful for the characterization and modification of sensor biocompatibility are widely scattered in the literature, and there are many peripheral studies from which useful information can be gleaned. The current paper reviews strategies suitable for addressing biofouling, one aspect of biosensor biocompatibility. Specifically, this paper addresses the effect of membrane biofouling on sensor sensitivity from the standpoint of glucose transport limitations. Part I discusses the in vivo and in vitro methods used to characterize biofouling and the effects of biofouling on sensor performance, while Part II presents techniques intended to improve biosensor biocompatibility.  相似文献   

20.
To a first approximation, the primary structure of many food proteins maybe thought of as a sequence of short hydrophobic and hydrophilic blocks. The influence of this type of structure on the steric-stabilising properties of such proteins has been considered here. In line with previous studies, using Self-Consistent-Field calculations, it has been shown that the presence of such protein molecules can lead to attraction and consequently bridging flocculation of colloidal particles. In the low adsorption energy limit for the hydrophobic groups (−1kBT), it is found that the steric potential is significantly influenced by the changes in the number of adsorbed segments, as two surfaces are brought together. This is in contrast to the well-known results in the literature for the high adsorption limiting cases, where the number of such segments remains constant. In particular, the changes in the number of adsorbed hydrophobic units are observed not to be a monotonic function of the separation distance, but increase or decrease in reasonable accord with the oscillatory nature of the steric interactions, observed for various block sizes. Effects of the addition of a moderately sized hydrophilic side chain to the above molecules have also been studied. It is found that, in principle, such a modification can lead to a purely repulsive steric potential in solutions of these hybrid biopolymers. At the hydrophilic side chain sizes considered here, the surface affinity of the molecules is observed not to be drastically different compared to those of unmodified proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号