首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental (liquid + liquid) equilibrium data were obtained for the extraction of toluene from n-decane by mixed-solvents (ethanol + water) and (ethanol + methanol) at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure.The measured tie-line data for two quaternary mixtures of {(ethanol +  water) + toluene + n-decane} and {(ethanol + methanol) + toluene + n-decane} are presented. The experimental quaternary (liquid + liquid) equilibrium data have been correlated using the NRTL activity coefficient model to obtain the binary interaction parameters of these components. The NRTL models predict the equilibrium compositions of the quaternary mixtures with small deviations. The partition coefficients and the selectivity factor of the mixed-solvents used were calculated and presented. From our experimental and calculated results, we conclude that for the extraction of toluene from n-decane mixtures the mixed-solvent (ethanol + methanol) has a higher selectivity factor than the other mixed-solvent at the three temperatures studied.  相似文献   

2.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

3.
(Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dipropyl ether) and (water + propionic acid + diisopropyl ether) were measured at T = 298.2 K and atmospheric pressure. The tie-line data were correlated by means of the UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

5.
Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane.  相似文献   

6.
The experimental equilibrium tie-lines of two quaternary mixtures for (methanol + 1,1-dimethylpropyl methyl ether + toluene + 2,2,4-trimethylpentane) and (methanol + 1,1-dimethylethyl methyl ether + toluene + 2,2,4-trimethylpentane) were measured at the temperature 298.15 K and ambient pressure. The quaternary experimental results and their constituent ternaries have been satisfactorily predicted using binary parameters alone obtained by an associated-solution model that takes into account association of methanol molecules and solvation between (methanol + polar molecules) with allowance for a non-polar interaction given by an extended form of the UNIQUAC model. The results are further compared with those correlated by modified and extended forms of the UNIQUAC models that include multi-body interaction parameters in addition to binary ones.  相似文献   

7.
Excess enthalpy (HE) for the binary system of (methanol + 2,4,4-trimethyl-1-pentene) (TMP-1) is reported at T = 298.15 K and 101 kPa. (Liquid + liquid) equilibrium (LLE) for the same system is measured at atmospheric pressure (101 kPa). LLE for ternary system of (water + methanol + 2,4,4-trimethyl-1-pentene) is measured at T = (283 and 298) K.The parameters of Non-Random Two-Liquid (NRTL) model were regressed for the system of (methanol + TMP-1) using HE and LLE from this work combined with isobaric (101 kPa) and isothermal (T = 331 K) VLE data from literature. The NRTL parameters for the binary system of (water + TMP-1) were fitted to a binary LLE data set from literature. NRTL parameters for the binary system of (water + methanol) were taken from ASPEN PLUS. The LLE for the ternary system was modeled by the three binary NRTL interaction parameters systems. The binary and ternary models were compared against the measured data.  相似文献   

8.
(Liquid + liquid) equilibrium (LLE) data for ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), and (heptane + xylene + N-formylmorpholine) have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

9.
(Liquid + liquid equilibrium) (LLE) data for ternary system: (water + 2,3-butanediol + oleyl alcohol) has been measured at T = (300.2, 307.2, and 314.2) K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The nonrandom two liquids equation (NRTL) was used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that NRTL could give a good correlation for the LLE data. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

10.
(Liquid + liquid) equilibrium (LLE) data for the ternary systems (heptane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate) and (heptane  + benzene + 1-ethyl-3-methylpyridinium ethylsulfate) were measured at T = 298.15 K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of aromatic compounds from heptane. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of {water (1) + phosphoric acid (2) + organic solvents (3)} were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer–Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.  相似文献   

12.
Oxygenates are used in gasoline to increase the octane number and reduce carbon monoxide emission. 2-methoxy-2,4,4-trimethylpentane (TOME) is a tertiary ether which can potentially be used in addition with current oxygenates. This compound can be produced by etherification of diisobutylene with methanol. During the etherification, water is formed due to the dehydration of methanol. The appearance of water can cause (liquid + liquid) phase split in the production process. In this work, several physical properties of systems containing water, methanol and TOME are studied for the first time. The liquid density of 2-methoxy-2,4,4-trimethylpentane is presented from T = (298.15 to 408.16) K. Excess enthalpies are reported for the binary system of (methanol + 2-methoxy-2,4,4-trimethylpentane) at (T = 298.15 K). The (liquid + liquid) equilibrium (LLE) for (water + 2-methoxy-2,4,4-trimethylpentane) from T = (283.15 to 318.15) K is determined. The LLE is also reported for the ternary system of (water + methanol + 2-methoxy-2,4,4-trimethylpentane) at T = (283.15 and 298.15) K. The UNIQUAC parameters were regressed to model VLE, excess enthalpy and LLE for the binary and ternary data with one set of parameters.  相似文献   

13.
(Liquid + liquid) equilibria (LLE) data were presented for one ternary system of {water + octane + diisopropyl ether (DIPE)} and three quaternary systems of (water + 1-propanol + DIPE + octane, or methylbenzene, or heptane) at T = 298.15 K and p = 100 kPa. The experimental LLE data were correlated with the modified and extended UNIQUAC models. Distribution coefficients were derived from the experimental LLE data to evaluate the solubility behavior of components in organic and aqueous phases.  相似文献   

14.
The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results.  相似文献   

15.
By measuring the (vapour + liquid) equilibrium of {methanol (1) + benzene (2) + NaI} and testing the data using the ternary Gibbs–Duhem equation, the experimental results of the (vapour + liquid) equilibrium with thermodynamic consistency are obtained. It is supposed that the mean activity coefficients of NaI in (methanol + benzene) mixed solvents may be represented by a power series of salt concentration (m1/2). Each parameter of the series was then obtained from the experimental results by the method of least squares. The calculated results show that the activity coefficients of NaI in (methanol + benzene) system with constant composition either decrease as the concentration increases, or decrease at first, then pass through a minimum and increase gradually again. This method is applicable to the determination of electrolytic activity coefficients in mixed non-aqueous solvents.  相似文献   

16.
New solubility and liquid–liquid equilibrium (LLE) data of solutions of (water + ethanol + α,α,α-trifluorotoluene) are determined at three temperatures (288.15, 298.15, and 308.15) K and atmospheric pressure. The solubility and LLE data are correlated quantitatively by empirical equations, NRTL, and UNIQUAC models. The effect of temperature upon miscibility of the ternary systems is small. Practically, α,α,α-trifluorotoluene is capable to extract efficiently ethanol from its dilute aqueous solutions to obtain absolute alcohol.  相似文献   

17.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3)} at T = 298.15 K and (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

18.
(Liquid + liquid) equilibrium (LLE) measurements of the solubility (binodal) curves and tie-line end compositions were carried out for {water (1) + lactic acid (2) + octanol, or nonanol, or decanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The relative mutual solubility of lactic acid is higher in the water layers than in the organic layers. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE results for the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

19.
(Liquid + liquid) equilibrium (LLE) data for the solubility curves and tie-line compositions were examined for mixtures of {water (1) + propionic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and atmospheric pressure, (101.3 ± 0.7) kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters phases than in the aqueous phase. The reliability of the experimental tie-line data were confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC and modified UNIFAC methods. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号