首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ring‐rearrangement metathesis (RRM) refers to the combination of several metathesis transformations into a domino process, in which an endocyclic double bond of a cycloolefin reacts with an exocyclic alkene. RRM has proven to be a powerful method for the rapid construction of complex structures. The extension of the basic ring‐opening–ring‐closing metathesis process by further metathesis steps as well as an examination of the driving forces, limits, scope, recent advantages, and future perspectives of these domino sequences is presented with various examples, thus reflecting the high efficiency and utility of RRM in organic synthesis.  相似文献   

2.
The ring‐opening polymerization of two caprolactone monomers catalyzed by zinc undecylenate (ZU) is reported. Polymerizations were performed in bulk with benzyl alcohol (BnOH) as an initiator at 90 and 110 °C, respectively. A slower polymerization rate was observed for γ‐octyloxy‐ϵ‐caprolactone as compared to ϵ‐caprolactone. Diblock copolymers were synthesized by the sequential monomer addition at 90 and 110 °C. The kinetic studies performed for the ring‐opening polymerization of ϵ‐caprolactone and γ‐octyloxy‐ϵ‐caprolactone and the successful synthesis of diblock copolymers by the sequential monomer addition confirmed the controlled/living nature of zinc undecylenate catalyzed reactions.  相似文献   

3.
A water‐soluble polycarbonate with dimethylamino pendant groups, poly(2‐dimethylaminotrimethylene carbonate) (PDMATC), is synthesized and characterized. First, the six‐membered carbonate monomer, 2‐dimethylaminotrimethylene carbonate (DMATC), is prepared via the cyclization reaction of 2‐(dimethylamino)propane‐1,3‐diol with triphosgene in the presence of triethylamine. Although the attempted ring‐opening polymerization (ROP) of DMATC with Sn(Oct)2 as a catalyst fails, the ROP of DMATC is successfully carried out with Novozym‐435 as a catalyst to give water‐soluble aliphatic polycarbonate PDMATC with low cytotoxicity and good degradability.  相似文献   

4.
A new metal‐free, ring‐expansion reaction of six‐membered N‐sulfonylimines with unstable diazomethanes, generated in situ from the N‐tosylhydrazones, has been developed. This reaction delivers valuable seven‐membered enesulfonamides by a Tiffeneau–Demjanov rearrangement and intramolecular proton transfer tautomerization process. Moreover, this ring‐expansion reaction can be carried out in a one‐pot fashion and scaled up to the gram scale by using aryl aldehydes, without the need to isolate the N‐tosylhydrazone.  相似文献   

5.
1‐[2′‐(Heptaphenylcyclotetrasiloxanyl)ethyl]‐1,3,3,5,5‐pentamethylcyclotetrasiloxane ( II ) was prepared from 1‐[2′‐(methyldichlorosilyl)ethyl]‐1,3,3,5,5,7,7‐heptaphenylcyclotetrasiloxane ( I ) and tetramethyldisiloxane‐1,3‐diol. Acid‐catalyzed ring‐opening of II in the presence of tetramethyldisiloxane gave 1,9‐dihydrido‐5‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( III ) and 1,9‐dihydrido‐3‐[2′‐(heptaphenylcyclotetrasiloxanyl)ethyl]nonamethylpentasiloxane ( IV ). Both acid‐ and base‐catalyzed ring‐opening polymerization of II gives highly viscous, transparent polymers. The structures of I – IV and polymers were determined by UV, IR, 1H, 13C, and 29Si NMR spectroscopy. In addition, molecular weights obtained by GPC and NMR end group analysis were confirmed with mass spectrometry. On the basis of 29Si NMR spectroscopy, the polymers appear to result exclusively from ring‐opening of the cyclotrisiloxane ring. No evidence for ring‐opening of the cyclotetrasiloxane ring was observed. Polymer properties were determined by DSC and TGA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 137–146, 2006  相似文献   

6.
The synthesis of a series of novel core‐modified and fused‐ring‐expanded tetraphenylporphyrins is reported. Theoretical calculations and magnetic circular dichroism (MCD) and fluorescence spectroscopic measurements were used to analyze the effect of core modification with Group 16 oxygen, sulfur, selenium, and tellurium atoms on the optical properties and electronic structures of the porphyrins. Marked redshifts of the Q and B bands and accelerated intersystem‐crossing rates were observed, thus making these compounds potentially suitable for use in a variety of applications. The scope for further fine‐tuning of these optical properties based on additional structural modifications, such as the incorporation of fused benzene rings to form ABAB structures by using a thiophene precursor with a fused bicyclo[2.2.2]octadiene ring and the introduction of various substituents onto the meso‐phenyl rings, is also examined.  相似文献   

7.
A novel platinum‐catalyzed asymmetric ring‐opening reaction of oxabenzonorbornadiene with terminal alkynes is described. The reaction affords optically active cis‐2‐alkynyl‐1,2‐dihydronaphthalen‐1‐ols in moderate yields with good enantioselectivity in the presence of catalytic amounts of Pt(COD)Cl2/(S)‐BINAP and an excess of zinc powder. The products were obtained exclusively with the relative cis‐configuration of the ring substituents and the prevalent (1R,2S)‐configuration of the stereocenters, as determined by single crystal X‐ray diffraction analysis.  相似文献   

8.
N‐Carboxyanhydride ring‐opening polymerization (NCA ROP) is a synthetically straightforward methodology to generate homopolypeptides. Extensive control over the polymerization permits the production of highly monodisperse synthetic polypeptides to a targeted molecular weight in the absence of unfavorable side reactions. Sequential NCA ROP permits the creation of block copolypeptides composed of individual polypeptide blocks boasting different functionalities, secondary structures, and desirable chemical properties. Consequently, a plethora of novel materials have been generated that have found wide‐range applicability. This review offers an insight into contemporary synthetic approaches toward NCA ROP before highlighting a number of block copolypeptide architectures generated.  相似文献   

9.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Aprocess for the assembly of carbazole alkaloids has been developed on the basis of ring‐closing metathesis (RCM) and ringrearrangement–aromatization (RRA) as the key steps. This method is based on allyl Grignard addition to isatin derivatives to provide smooth access to 2,2‐diallyl 3‐oxindole derivatives through a 1,2‐allyl shift. The diallyl derivatives were used as RCM precursors to afford a novel class of spirocyclopentene‐3‐oxindole derivatives, which underwent a novel RRA reaction to afford carbazole derivatives. The synthetic sequence to carbazoles was shortened by combining the RCM and RRA steps in an orthogonal tandem catalytic process. The utility of this methodology was further demonstrated by the straightforward synthesis of carbazole alkaloids, including amukonal derivative, girinimbilol, heptaphylline, and bis(2‐hydroxy‐3‐methylcarbazole).  相似文献   

11.
Eight new N‐Hoveyda‐type complexes were synthesized in yields of 67–92 % through reaction of [RuCl2(NHC)(Ind)(py)] (NHC=1,3‐bis(2,4,6‐trimethylphenylimidazolin)‐2‐ylidene (SIMes) or 1,3‐bis(2,6‐diisopropylphenylimidazolin)‐2‐ylidene (SIPr), Ind=3‐phenylindenylid‐1‐ene, py=pyridine) with various 1‐ or 1,2‐substituted ferrocene compounds with vinyl and amine or imine substituents. The redox potentials of the respective complexes were determined; in all complexes an iron‐centered oxidation reaction occurs at potentials close to E=+0.5 V. The crystal structures of the reduced and of the respective oxidized Hoveyda‐type complexes were determined and show that the oxidation of the ferrocene unit has little effect on the ruthenium environment. Two of the eight new complexes were found to be switchable catalysts, in that the reduced form is inactive in the ring‐opening metathesis polymerization of cis‐cyclooctene (COE), whereas the oxidized complexes produce polyCOE. The other complexes are not switchable catalysts and are either inactive or active in both reduced and oxidized states.  相似文献   

12.
The synthesis of poly(β‐alanine) by Candida antarctica lipase B immobilized as novozyme 435 catalyzed ring‐opening of 2‐azetidinone is reported. After removal of cyclic side products and low molecular weight species pure linear poly(β‐alanine) is obtained. The formation of the polymer is confirmed with 1H NMR spectroscopy and MALDI‐TOF mass spectrometry. The average degree of polymerization of the obtained polymer is limited to = 8 by its solubility in the reaction medium. Control experiments with β‐alanine as a substrate confirmed that the ring structure of the 2‐azetidinone is necessary to obtain the polymer.

  相似文献   


13.
The ring‐opening polymerization of ?‐caprolactone (?‐CL) catalyzed by iodine (I2) was studied. The formation of a charge‐transfer complex (CTC) among triiodide, I, and ?‐CL was confirmed with ultraviolet–visible spectroscopy. The monomer ?‐CL was polymerized in bulk using I2 as a catalyst to form the polyester having apparent weight‐average molecular weights of 35,900 and 45,500 at polymerization temperatures of 25 and 70 °C, respectively. The reactivity of both, ?‐CL monomer and ?‐CL:I2 CTC, was interpreted by means of the potential energy surfaces determined by semiempirical computations (MNDO‐d). The results suggest that the formation of the ?‐CL:I2 CTC leads to the ring opening of the ?‐CL structure with the lactone protonation and the formation of a highly polarized polymerization precursor (?‐CL)+. The band gaps approximated from an extrapolation of the oligomeric polycaprolactone (PCL) structures were computed. With semiempirical quantum chemical calculations, geometries and charge distributions of the protonated polymerization precursor (?‐CL)+ were obtained. The calculated band gap (highest occupied molecular orbit/lowest unoccupied molecular orbit differences) agrees with the experiment. The analysis of the oligomeric PCL isosurfaces indicate the existence of a weakly lone pair character of the C?O and C? O bonds suggesting a ?‐CL ring‐opening specificity. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 714–722, 2002  相似文献   

14.
An efficient metal‐free homodifunctional bimolecular ring‐closure method is developed for the formation of cyclic polymers by combining reversible addition‐fragmentation chain transfer (RAFT) polymerization and self‐accelerating click reaction. In this approach, α,ω‐homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, well‐defined cyclic polymers are then prepared using the self‐accelerating double strain‐promoted azide–alkyne click (DSPAAC) reaction to ring‐close the azide end‐functionalized homodifunctional linear polymer precursors. Due to the self‐accelerating property of DSPAAC ring‐closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring‐closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers.

  相似文献   


15.
Under the catalysis of Lewis acid Co(ClO4)2 the reaction of the sterically hindered 1,1,2,3‐tetrasubstituted cyclopropanes with arylamines in refluxing THF gave the functionalized 2‐aminopyrroles with sequential ring‐opening of cyclopropane, nucleophilic substitution, nucleophilic addition of cyano group and recyclization processes.  相似文献   

16.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

17.
Hybrid meta‐GGA density functional theory (the MPWB1K functional) was used to study the hydroxylation and ring‐opening mechanism of 2‐methyl‐3‐hydroxypyridine‐5‐carboxylic acid oxygenase (MHPCO). This enzyme catalyses the conversion of 2‐methyl‐3‐hydroxypyridine‐5‐carboxylic acid (MHPC) to α‐(N‐acetylaminomethylene)succinic acid (AAMS), which is the essential ring‐opening step in the bacterial degradation of vitamin B6. MHPCO belongs to the flavin‐containing aromatic hydroxylases family. However, MHPCO is capable of catalysing a subsequent aromatic ring‐cleavage reaction to give acyclic products rather than hydroxylated aromatic ones. Our calculations show that the re‐aromatisation of the hydroxylated intermediate occurs spontaneously in aqueous solution; this implies that the ring‐opening process occurs inside the enzyme’s active site, in which limited water is available. The instability of the hydroxylated intermediate of MHPCO is the main reason why acyclic products are formed. Previously proposed mechanisms for the ring‐opening step were studied, and were shown to be less likely to occur (ΔΔG≠298>35 kcal mol?1). Two new pathways with reasonable barrier heights (ΔΔG≠298<15 kcal mol?1) are reported herein, which are in accordance with all experimental information present to date.  相似文献   

18.
An asymmetric synthesis of densely functionalized 7–11‐membered carbocycles and 9–11‐membered lactones has been developed. Its key steps are a modular assembly of sulfoximine‐substituted C‐ and O‐tethered trienes and C‐tethered dienynes and their Ru‐catalyzed ring‐closing diene and enyne metathesis (RCDEM and RCEYM). The synthesis of the C‐tethered trienes and dienynes includes the following steps: 1) hydroxyalkylation of enantiomerically pure titanated allylic sulfoximines with unsaturated aldehydes, 2) α‐lithiation of alkenylsulfoximines, 3) alkylation, hydroxy‐alkylation, formylation, and acylation of α‐lithioalkenylsulfoximines, and 4) addition of Grignard reagents to α‐formyl(acyl)alkenylsulfoximines. The sulfoximine group provided for high asymmetric induction in steps 1) and 4). RCDEM of the sulfoximine‐substituted trienes with the second‐generation Ru catalyst stereoselectively afforded the corresponding functionalized 7–11‐membered carbocyles. RCDEM of diastereomeric silyloxy‐substituted 1,6,12‐trienes revealed an interesting difference in reactivity. While the (R)‐diastereomer gave the 11‐membered carbocyle, the (S)‐diastereomer delivered in a cascade of cross metathesis and RCDEM 22‐membered macrocycles. RCDEM of cyclic trienes furnished bicyclic carbocycles with a bicyclo[7.4.0]tridecane and bicyclo[9.4.0]pentadecane skeleton. Selective transformations of the sulfoximine‐ and bissilyloxy‐substituted carbocycles were performed including deprotection, cross‐coupling reaction and reduction of the sulfoximine moiety. Esterification of a sulfoximine‐substituted homoallylic alcohol with unsaturated carboxylic acids gave the O‐tethered trienes, RCDEM of which yielded the sulfoximine‐substituted 9–11‐membered lactones. RCEYM of a sulfoximine‐substituted 1,7‐dien‐10‐yne showed an unprecedented dichotomy in ring formation depending on the Ru catalyst. While the second‐generation Ru catalyst gave the 9‐membered exo 1,3‐dienyl carbocycle, the first‐generation Ru catalyst furnished a truncated 9‐membered 1,3‐dieny carbocycle having one CH2 unit less than the dienyne.  相似文献   

19.
Attempts to prepare mixed M(0)/Ag+ complexes with µ‐bridging P ligands by reaction of benzazaphosphole M(CO)5 complexes 1a–e (M?W, Mo, Cr) with AgSbF6 in THF lead to rapid ring‐opening polymerization of this ether at room temperature and, as shown for 1a /AgSbF6, even at low temperature. Oxetane and epoxides (styrene oxide and cyclohexene oxide) polymerize even more vigorously in the presence of this initiator and require dilution with toluene to control the strongly exothermic reaction. Related P(III)W(CO)5/AgSbF6 systems with Ph3P, (EtO)3P or 2,4,6‐triphenyl‐phosphinine ligands also initiate the THF polymerization, but less efficiently. Efforts to isolate the initiator complex in other solvents failed because of its high sensitivity to nucleophiles and provided 2a ,characterized by crystal structure analysis as the addition product of methanol at 1a , although 1a itself is stable towards MeOH. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 664–670  相似文献   

20.
A complex consisting of one Bi3+ ion and two 2‐mercaptoethanol units (BiME2) was used as initiator for the ring‐opening polymerization of ε‐caprolactone in bulk. A kinetic comparison showed that BiME2 is as reactive as initiator as Sn‐octanoate and more reactive than Bi‐hexanoate. The difference to BiHex3 decreased at higher temperatures and upon addition of an alcohol as coinitiator. When tetra(ethylene glycol) was used as coinitiator, it was completely incorporated into the poly(εCL) chain, so that telechelic polylactones having two OH‐endgroups were formed. In the absence of a coinitiator, 2‐mercaptoethanol or its disulfide were incorporated in the form of ester groups. Furthermore, it was found by MALDI‐TOF mass spectrometry that small amounts of cyclic oligolactones (detected up to a degree of polymerization of 17) were formed under all reaction conditions. Higher temperatures and longer times favored a higher content of cycles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3175–3183, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号