首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A series of organometallic molybdenum/iron/sulfur clusters of the general formula [Cp1MoFe3S4Ln]m (Cp1 = η5-C5Me5; L = StBu, SPh, Cl, I, n = 3, m = 1−; Ln = I2(PtBu3), m = 0; L = 2,6-diisopropylphenylisocyanide (ArNC), n = 7, m = 1+) have been synthesized. A cubane cluster (PPh4)[Cp1MoFe3S4(StBu)3] (2) was isolated from a self-assembly reaction of Cp1Mo(StBu)3 (1), FeCl3, LiStBu, and S8 followed by cation exchange with PPh4Br in CH3CN, while an analogous cluster (PPh4)[Cp1MoFe3S4(SPh)3] (3) was obtained from the Cp1MoCl4/FeCl3/LiSPh/PPh4Br reaction system or from a ligand substitution reaction of 2 with PhSH. Treatment of 2 with benzoyl chloride gave rise to (PPh4)[Cp1MoFe3S4Cl3] (4), which was in turn converted to (PPh4)[Cp1MoFe3S4I3] (5) by the reaction with NaI. A neutral cubane cluster Cp1MoFe3S4I2(PtBu3) (6) was generated upon treating 5 with PtBu3. Although reduction of 4 by cobaltocene under the presence of ArNC resulted in a disproportionation of the cubane core to give Fe4S4(ArNC)9Cl (7), a similar reduction reaction of 5 produced [Cp1MoFe3S4(ArNC)7]I (8), where the MoFe3S4 core was retained. The crystal structures of 46, and 8 were determined by the X-ray analysis.  相似文献   

2.
Intramolecular addition of heterofunctionalities to CC double bonds without β-hydride elimination was investigated and catalyzed by ruthenium complexes. The combination of RuCl3 · nH2O (10 mol%) and 3 equiv. of AgOTf acted as a catalyst for cyclization of 2-allylphenol (1a) to 2,3-dihydro-2-methylbenzofuran (2a) in good yield in the presence of Cu(OTf)2 as a co-catalyst and PPh3 as a ligand. This catalyst system also catalyzed the cyclization of 2-allylbenzoic acid to lactone in 91% yield. Then, a new catalyst system (RuCp1Cl2)2 (1.0 mol%)/4AgOTf/4PPh3, was found to be more active even in the absence of Cu(OTf)2. Furthermore, this catalysis was applied to asymmetric reaction of 2-allylphenol (1a). When using TolBINAP as a ligand, over 60% e.e. was achieved.  相似文献   

3.
Six organophosphine/phosphite stabilized N-silver(I) succinimide complexes of the type Ln · AgNC4H4O2 (L = PPh3; n = 1, 2a; n = 2, 2b; n = 3, 2c; L = P(OEt)3; n = 1, 2d; n = 2, 2e; n = 3, 2f) have been prepared by reacting [AgNC4H4O2], which can be synthesized from succinimide and excessive Ag2O in boiling water, with triphenylphosphine or triethylphosphite in dichloromethane under a nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H, 13C{H} NMR, IR spectroscopy and thermal analysis (TG and DSC). The molecular structure of 2c has been determined by X-ray single crystal analysis, in which the silver atom is in a distorted tetrahedral geometry.  相似文献   

4.
Reaction of Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OSO2CF3)(DME) (DME = 1,2-dimethoxyethane) with 2 equiv. of CF3COOK yields μ-(CF3COO)2-[Mo(N-2,6-i-Pr2-C6H3)(CHCMe2Ph)(OOCCF3)(Et2O)]2 (1). Compound 1 crystallizes in the orthorhombic space group Pna21 with a = 17.2485(3), b = 17.0336(3), c = 25.4031(5) Å, α = β = γ = 90°, V = 7463.5(2) Å3, Z = 4. In contrast to alkoxide based Schrock type initiators, 1 is virtually inactive in numerous metathesis reactions including ring-closing metathesis (RCM) and homo metathesis reactions, the cyclopolymerization of 1,6-heptadiynes, and even ring-opening metathesis polymerization (ROMP) of norborn-2-ene. However, addition of quinuclidine results in the in situ formation of 1a (Mo(N-2,6-i-Pr2-C6H3)(CHCMe2C6H5)(OOCCF3)2(quinuclidine) which displays moderate activity in ROMP, cyclopolymerization of 1,6-heptadiynes and RCM. Theoretical investigations carried out on the B3LYP/LACVP1 level provide substantial explanation for these findings.  相似文献   

5.
A series of four isostructural dodecanuclear complexes [MnIII9MnII2LnIII(O)8(OH)(piv)16(NO3)(CH3CN)]·xCH3CN·yC7H16 (piv = pivalate; x = ½, y = ¾, Ln = Tb (1); x = 2, y = ½, Ln = Dy (2), Ho (3), and Y (4)) has been prepared for which the structural motif described as ‘a lanthanide ion nested in a large manganese shell’ is observed. All compounds show out-of-phase signals in their ac susceptibilities, and their single-molecule magnet behaviour was confirmed by single-crystal micro-SQUID studies of 1-3 which show hysteresis loops of molecular origin at T < 1.0 K. The SMM behaviour observed in compounds 1-3 is more pronounced than that for 4, which contains the diamagnetic YIII ion. This is principally the result of ferromagnetic coupling between the paramagnetic anisotropic LnIII ions (TbIII, DyIII and HoIII) and the manganese shell, which enhances the total spin ground state of the complexes.  相似文献   

6.
《Comptes Rendus Chimie》2008,11(8):906-914
A novel unsymmetrically disubstituted propanedithiolate compound [Fe2(CO)42-dmpe)(μ-pdt)] (1) (pdt = SCH2CH2CH2S, dmpe = Me2PCH2CH2PMe2) was synthesized by treatment of [Fe2(CO)6(μ-pdt)] with dmpe in refluxing THF. Compound 1 was characterized by single-crystal X-ray diffraction analysis. Protonation of 1 with HBF4·Et2O in CH2Cl2 gave at room temperature the μ-hydrido derivative [Fe2(CO)42-dmpe)(μ-pdt)(μ-H)](BF4)] (2). At low temperature, 1H and 31P–{1H} NMR monitoring revealed the formation of a terminal hydride intermediate 3. Comparison of these results with those of a VT NMR study of the protonation of symmetrical compounds [Fe2(CO)4L2(μ-pdt)] [L = PMe3, P(OMe)3] suggests that in disubstituted bimetallic complexes [Fe2(CO)4L2(μ-pdt)], dissymmetry of the complex is required to observe terminal hydride species. Attempts to extend the series of chelate compounds [Fe2(CO)42-L2)(μ-pdt)] by using arphos (arphos = Ph2AsCH2CH2PPh2) were unsuccessful. Only mono- and disubstituted derivatives [Fe2(CO)6−n(Ph2AsCH2CH2PPh2)n(μ-pdt)] (n = 1, 4a; n = 2, 4b), featuring dangling arphos, were isolated under the same reaction conditions of formation of 1. Compound 4b was structurally characterized.  相似文献   

7.
Syntheses of three benzaldazine compounds 13 with the general formula Ar1(CH = N–N = HC)Ar2 (Ar1 = Ar2 = 2-OH-3,5-tBu2C6H2 (1), Ar1 = Ar2 = 2-BrC6H4 (2), Ar1 = ortho-C6H4(NHC6H3-Me2-2,6), Ar2 = C6H4F-2 (3)) are described. All compounds were characterized by elemental analysis, 1H NMR, 13C NMR, IR spectroscopy and single-crystal X-ray crystallography. The different supramolecular structures were obtained through different weak interactions (C ? H···O, O ? H···N and π···π interactions for 1; C ? H···Br and Br···Br interactions for 2; C ? H···F and C ? H···N interactions for 3). Compound 1 shows solvent-dependent fluorescent properties with blue to green emission on the increasing of the solvent polarity. Compounds 2, 3 show blue photoluminescence in different solvents.  相似文献   

8.
The reactions of silver(I) halides (Cl or Br) with thiophene-2-carbaldehyde N1-methyl thiosemicarbazone (HttscMe) in the presence of Ph3P (1:1:1 molar ratio) yield halogen-bridged dimers, [Ag2(μ-X)21-S-HttsMe)2(PPh3)2] (X = Cl, 1; Br, 2). The use of 2,2′-bipyridine in lieu of Ph3P in the reaction of silver(I) chloride with HttscMe yields the sulfur-bridged dimer, [Ag2(μ-S-HttscMe)21-HttsMe)2] · 2CHCl3 3. The substituents have altered the nature of bridge between the two silver atoms. The Ag···Ag separation (3.4867(5) Å) in complex 3 is less than that in the halogen-bridged dimers (3.734(4) Å 1; 3.746(5) Å 2). Unlike PPh3 the co-ligand 2,2′-bipyridine did not coordinate to the silver center, but was necessary for crystallization in the reaction with the thio-ligand. NMR spectroscopy revealed that the complexes remained unchanged in the solution state (CDCl3).  相似文献   

9.
The synthetic aspects of chemistry of ligands based on naphthalene peri-substituted by heavier Group 15 elements (P, As, Sb, Bi) or Group 16 elements (S, Se, Te) are discussed in this review. An overview of coordination chemistry of these ligands is also given. In general, the area is dominated by bis(phosphines) Nap(PR2)2 and dithiolates Nap(SR)2 (Nap = naphthalene-1,8-diyl), and most of the ligands act with chelating rigid C3-backbones. Whilst all known bis(phosphine) complexes with Ni, Pd and Pt contain unmodified Nap(PR2)2 moieties, the reactions with a variety of metal carbonyls sometimes result in P–C bond cleavage within the ligand. A range of gold complexes with Nap(PR2)2 ligands have been investigated for material applications. NapP2 ligands other than phosphines are also described, these include 1,2-diphosphaacenaphthenes, bis(phosphonites) and bis(phosphine oxides). Group 16 peri-dichalcogenolates used as ligands include NapS2, NapSe2 and NapSSe systems, but no tellurium congeners. Heterodentate ligands discussed in this review include those with NapPN, NapPO, NapPS, NapPF, NapPC and NapSN motifs. Ligands with heavier Group 15 donor atoms (NapAs2, NapSb2) are also reported. All possible oxides of the dithioles (monooxide to tetraoxide) as ligands are also discussed. Areas of interest for further work are outlined.  相似文献   

10.
The reaction of dilithionaphthalene with R2NPCl2 (R = iPr and Et) gave diisopropylamino-naphtho[1,8-bc]phosphete 3a and its diethyl analog 3b (phosphorus versions of single-atom peri-bridged naphthalene). The nature of the strained four-membered ring thus formed was examined by treating 3a with four types of electrophiles, BH3, elemental sulfur, methyltriflate, and a metal fragment W(CO)5, all of which gave the corresponding electrophile adducts with the strained ring retained. X-ray analysis was performed for 3b and all of the above adducts, showing that the trigonal plane of the amino group was commonly oriented almost perpendicular to the naphthalene plane, which was rationally understood on the basis of the favorable overlap between the lone pair orbital of the sp2 nitrogen center and the σ1 orbital(s) of the two P–C bonds. In addition, when the W(CO)5 adduct, W(3a)(CO)5, was treated with Pt(PPh3)4 and then with a CO gas, its four-membered ring was expanded to give a tungsten–platinum heterodinuclear complex having a five-membered platina–phospha heterocycle.  相似文献   

11.
Several multinuclear ferrocenyl–ethynyl complexes of formula [(η5-C5H5)(dppe)MII?CC–(fc)n–CC–MII(dppe)(η5-C5H5)] (fc = ferrocenyl; dppe = Ph2PCH2CH2PPh2; 1: MII = Ru2+, n = 1; 2: MII = Ru2+, n = 2; 3: MII = Ru2+, n = 3; 4: MII = Fe2+, n = 2; 5: MII = Fe2+, n = 3) were studied. Structural determinations of 2 and 4 confirm the ferrocenyl group directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5H5)(dppe)M] metal center. Complexes of 15 undergo sequential reversible oxidation events from 0.0 V to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the end-capped metallic centers. The solid-state and solution-state electronic configurations in the resulting oxidation products of [1]+ and [2]2+ were characterized by IR, X-band EPR spectroscopy, and UV–Vis at room temperature and 77 K. In [1]+ and [2]2+, broad intervalence transition band near 1600 nm is assigned to the intervalence transition involving photo-induced electron transfer between the Ru3+ and Fe2+ metal centers, indicating the existence of strong metal-to-metal interaction. Application of Hush’s theoretical analysis of intervalence transition band to determine the nature and magnitude of the electronic coupling between the metal sites in complexes [1]+ and [2]2+ is also reported. Computational calculations reveal that the ferrocenyl–ethynyl-based orbitals do mix significantly with the (η5-C5H5)(dppe)Ru metallic orbitals. It clearly appears from this work that the ferrocenyl–ethynyl spacers strongly contribute in propagating electron delocalization.  相似文献   

12.
Reactions of copper(I) halides with a series of thiosemicarbazones, namely, benzaldehyde thiosemicarbazone (R1R2CN–NH–C(S)–NH2, R1 = Ph, R2 = H; Hbtsc), 2-benzoylpyridine thiosemicarbazone (R1 = Ph, R2 = py; Hbpytsc), and acetone thiosemicarbazone (R1 = R2 = Me; Hactsc), in the presence of PPh3 has formed dimeric complexes, viz. sulfur bridged [Cu2(μ-S-Hbtsc)2Br2(PPh3)2]·2H2O (1), iodo-bridged [Cu2(μ-I)21-S-Hbtsc)2(PPh3)2] (2), and heterobridged [Cu23-S,N3-Hactsc)(η1-Br)(μ-Br)(PPh3)2] (3), as well as mononuclear complexes [CuX(η1-S-Hbpytsc)(PPh3)2]·CH3CN (X = Br, 4; Cl, 5). Complexes 1, 2, 4 and 5 involve thiosemicarbazone ligands in η1-S bonding mode while in compound 3, ligand acts in N3, S-chelation-cum-S-bridging mode (μ3-S,N3 mode). The intermolecular interactions such as, N2H?X, HN1H?X (X = S, Br, Cl), CH?π interactions lead to 2D networks. All the complexes have been characterized with the help of elemental analyses, IR, 1H, and 31P NMR spectroscopy, and single crystal X-ray crystallography. The role of a solvent in alteration of nuclearity and bonding modes of complexes has been highlighted.  相似文献   

13.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

14.
A series of novel neutral nickel complexes, aryl (phenyl or naphthyl) nickel N-alkyl-6-(1-(arylimino)ethyl)picolinamides, were synthesized and characterized by NMR and IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analyses of the complexes C2, C3 and C7 reveal distorted square-planar geometry along with the molecular structure of one free ligand L1. On activation with diethylaluminum chloride (Et2AlCl), the nickel complexes exhibited moderate catalytic activities for ethylene oligomerization, and the catalytic activity was up to 2.45 × 105 g mol?1(Ni) h?1 in the presence of 1 equiv. PPh3. Moreover, these complexes also exhibit moderate activities for Kumada–Corriu reaction and polymerization of methyl methacrylate.  相似文献   

15.
Reactions of (tBuHN)3PNSiMe3 (1) with the alkyl-metal reagents dimethylzinc, trimethylaluminum and di-n-butylmagnesium yield the monodeprotonated complexes [MeZn{(NtBu)(NSiMe3)P(NHtBu)2}] (2), [Me2Al{(NtBu)(NSiMe3)P(NHtBu)2}] (3) and [Mg{(NtBu)(NSiMe3)P(NHtBu)2}2] (4), respectively. Attempts to further deprotonate complex 2 with n-butyllithium or di-n-butylmagnesium result in nucleophilic displacement of the methylzinc fragment by lithium or magnesium. The two remaining amino protons of 3 are removed by reaction with di-n-butylmagnesium to give a heterobimetallic complex in which the coordination sphere of magnesium is completed by two molecules of THF (5 · 2THF) or one molecule of TMEDA (5 · TMEDA). Reaction of complex 3 with 1 equiv. of n-butyllithium followed by treatment of the product with di-n-butylmagnesium yields the complex {Me2Al[(NtBu)(NSiMe3)P(NtBu)2]MgBu} Li · 4THF (6 · 4THF), the first example of a triply deprotonated complex of 1 containing three different metals. Reaction of complex 5 with iodine results in cleavage of an Al–Me group to give {MeIAl[(NtBu)(NSiMe3)P(NtBu)2Mg]} (7). Complexes 5 · 2THF, 5 · TMEDA, 6 · 4THF and 7 have been characterized in solution by multinuclear (1H, 13C, 31P and 7Li) NMR spectroscopy, while the solid-state structures of 2, 4 and 5 · 2THF have been determined by X-ray crystallography.  相似文献   

16.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

17.
《Polyhedron》2001,20(9-10):1011-1016
The compounds [Fe(ch)(CO)2PPh3] (1) (ch=chalcone) and [Fe(sba)(CO)2PPh3] (2) (sba=sorbic acid) were prepared by irradiating the tetracarbonyltriphenylphosphineiron(0) complex in benzene in the presence of ch or sba. The compounds were characterized by infrared and 31P NMR spectroscopies. Their electrochemical behavior was investigated by cyclic voltammetry and the results suggest that their oxidations occur by more than one electrochemical step, producing free ch and sba, free PPh3 and solvated Fe(III). It was observed that sba ligand contributes more effectively to the stabilization of metal center in these complexes. The X-ray crystal and molecular structures of 1 and 2 were determined; it was shown that the Fe atom adopts a distorted octahedral coordinated geometry in which three of the sites are occupied by the ch or sba ligand. The [Fe(ch)(CO)2PPh3] complex is a monomer and the unit cell of complex 2 contains exist two identical and crystallographically independent molecules of [Fe(sba)(CO)2PPh3] which are linked by short hydrogen bonds OH· · ·O  相似文献   

18.
《Comptes Rendus Chimie》2015,18(8):816-822
The treatment of [PdL3(NH3)]OTf (L3 = (PEt3)2(Ph) (1), (2,6-(Cy2PCH2)2C6H3) (3)) with NaNH2 in THF afforded dimeric and monomeric parent-amido palladium(II) complexes with bridging and terminal NH2, respectively, anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (2) and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (4). The dimeric complex 2 crystallizes in the space group P21/n with a = 13.228(2) Å, b = 18.132(2) Å, c = 24.745(2) Å, β = 101.41(1)°, and Z = 4. It has been found that there are two crystallographically independent molecules with Pd(1)–Pd(2) and Pd(3)–Pd(4) distances of 2.9594 (10) and 2.9401(9) Å, respectively. The monomeric amido complex 4 protonates from trace amounts of water to give the cationic ammine species [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 4 reacts with diphenyliodonium triflate ([Ph2I]OTf) to give aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf (5). Reaction of 4 with dialkyl acetylenedicarboxylate (DMAD, DEAD) yields diastereospecific palladium(II) vinyl derivative (Z)–(Pd(Cy2PCH2)2C6H3)(CR = CR(NH2)) (R = CO2Me (6a), CO2Et (6b)). Reacting complexes 6a and 6b with p-nitrophenol produces (Pd(Cy2PCH2)2C6H3)(OC6H4p-NO2) (8) and cis-CHR = CR(NH2), exclusively.  相似文献   

19.
Two new copper(II) complexes, [Cu2(L1)2](ClO4)2 (1) and [Cu(L2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through phenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independent N-(salicylidene)-bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5–300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J = ?23.6 cm?1, which is substantiated by a DFT calculation (J = ?27.6 cm?1) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.  相似文献   

20.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号