首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model analogues of the metallurgical phases found in 2xxx and 7xxx series aluminium alloys were produced by magnetron sputtering and employed to investigate the local and general anodising behaviour of the alloys. Electrochemical tests, allied with scanning and transmission electron microscopy, enabled insight into the local anodising behaviour of the constituents and related effects on the overall porous oxide morphology. Under potentiodynamic conditions, the observed anodic current peaks of the commercial alloys were related with the anodic oxidation of specific second‐phase particles. At 0 V, magnesium‐containing particles, including S‐phase, were preferentially removed from the alloy surface; at 5–6 VSCE, the copper‐ and/or iron‐containing particles, such as θ phase and Al7Cu2Fe particles were anodically oxidised. The initial voltage transient revealed for the commercial alloys during galvanostatic anodising was related to the previous findings and reproduced by the use of coupled alloy analogues. Transmission electron microscopy revealed that the voltage transient associated with oxidation of second‐phase material influence the morphology of the anodic film formed on the aluminium matrix. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, the initial oxidation behaviour of laser‐treated Al/NiCrAlY bond‐coat is investigated. Two approaches, (i) Al film sputtering on the surface of bond‐coat and (ii) laser treatment, have been taken to enhance the oxidation resistance of NiCrAlY bond‐coat. Experimental results showed that after laser treatment, the Al/NiCrAlY bond‐coat exhibited a columnar dendritic microstructure without cracks and voids. A dense and continuous α‐Al2O3/Cr2O3 multilayer was found to form on the bond‐coat surface. Results on the cyclic oxidation at 1200 °C (for time ≤ 204 h) revealed that the laser‐treated Al/NiCrAlY bond‐coat exhibited better oxidation resistance compared to as‐sprayed NiCrAlY, Al/NiCrAlY and laser‐remelted NiCrAlY bond‐coat. The formation of θ‐Al2O3, NiO, Cr2O3 and NiCr2O4 spinel oxides was observed to be suppressed due to the preformed α‐Al2O3 scale during initial oxidation on the surface of laser pre‐oxidized Al/NiCrAlY bond‐coat. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Sheet AA2024‐T3 is probably one of the most studied aluminium alloys in the corrosion field, because, with copper as an alloying addition, it is one of the most corrosion‐prone aluminium alloys. This paper reports new findings on the composition and distribution of intermetallic (IM) particles in AA2024‐T3 through the examination of over 80 000 compositional domains in nearly 18 000 IM particles. This work was achieved by using an electron microprobe to map out 2 × 2 mm2 at a step size of 400 nm. This study revealed that the composition of individual particles can vary considerably from ‘accepted’ compositions. Domains within particles were extensive across the surface. Because such a large area was mapped, it was possible to subdivide this area and to look at the variation of particle statistics from region to region, providing some information on the statistical variation for small electrodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Aluminium alloys such as AA2024 are susceptible to severe corrosion attack in aggressive solutions (e.g. chlorides). Conversion coatings, like chromate, or rare earth conversion coatings are usually applied in order to improve corrosion behaviour of aluminium alloys. Methacrylate‐based hybrid films deposited with sol–gel technique might be an alternative to conversion coatings. Barrier properties, paint adhesion and possibly self‐healing ability are important aspects for replacement of chromate‐based pre‐treatments. This work evaluates the behaviour of cerium as corrosion inhibitor in methacrylate silane‐based hybrid films containing SiO2 nano‐particles on AA2024. Hybrid films were deposited on aluminium alloy AA2024 by means of dip‐coating technique. Two different types of coating were applied: a non‐inhibited film consisting of two layers (non‐inhibited system) and a similar film doped with cerium nitrate in an intermediate layer (inhibited system). The film thickness was 5 µm for the non‐inhibited system and 8 µm for the inhibited system. Film morphology and composition were investigated by means of GDOES (glow discharge optical emission spectroscopy). Moreover, GDOES qualitative composition profiles were recorded in order to investigate Ce content in the hybrid films as a function of immersion time in 0.05 M NaCl solution. The electrochemical behaviour of the hybrid films was studied in the same electrolyte by means of EIS technique (electrochemical impedance spectroscopy). Electrochemical measurements provide evidence that the inhibited system containing cerium displays recovery of electrochemical properties. This behaviour is not observed for the non‐inhibited coating. GDOES measurements provide evidence that the behaviour of inhibited system can be related to migration of Ce species to the substrate/coating interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
High‐speed tool steel (AISI M2) surface is pre‐prepared to form a thin carbon film containing 5% B4C particles prior to laser treatment process. Morphological and metallurgical changes are examined in the treated layer using electron microscope, energy dispersive spectroscopy, and X‐ray diffraction. The microhardness and the residual stress formed at the treated surfaces are measured for samples with and without B4C particles. It is found that the micro‐stresses formed in the neighborhood of B4C particles at the treated surface contributed to the microhardness enhancement at the surface. This is associated with the mismatch of thermal expansion coefficients between B4C particles and the base alloy. The nitride phases are formed at the treated surface, which also contribute to the microhardness increase at the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Recent interest in environmentally friendly alternatives to chromate‐based corrosion inhibitors has led to the development of a range of novel coating formulations. The work described herein is aimed at developing a novel methodology to contribute to investigation of the self‐healing and active corrosion protection of the new coatings. An experimental procedure has been developed to model a defect in the coating by fixing coated specimens in close proximity to the uncoated AA2024‐T3, each separated by a narrow gap containing sodium chloride solution. After exposure to the corrosive environment, elemental depth profiles of the uncoated specimens were acquired by glow discharge optical emission spectroscopy (GDOES). The depth profiles of selected elements (notably aluminium, oxygen and copper) were shown to have characteristics which can be correlated with bulk surface roughening/intensity of corrosion, the thickness of the corroded layer and de‐alloying/re‐distribution of copper. An unanticipated inhibitory effect was noted in the case of a coating doped with γ‐Al2O3 (γ‐alumina or AluOx). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Supported vanadium oxides are one of the most promising alternative catalysts for propane dehydrogenation (PDH) and efforts have been made to improve its catalytic performance. However, unlike Pt‐based catalysts, the nature of the active site and surface structure of the supported vanadium catalysts under reductive reaction conditions still remain elusive. This paper describes the surface structure and the important role of surface‐bound hydroxyl groups on VOx / γ‐Al2O3 catalysts under reaction conditions employing in situ DRIFTS experiments and DFT calculations. It is shown that hydroxyl groups on the VOx /Al2O3 catalyst (V?OH) are produced under H2 pre‐reduction, and the catalytic performance for PDH is closely connected to the concentration of V?OH species on the catalyst. The hydroxyl groups are found to improve the catalyst that leads to better stability by suppressing the coke deposition.  相似文献   

8.
铝合金中经常会引入一些第二相来改善其性能,第二相由于和铝基体的电位差不同,将会对铝合金的局部腐蚀产生重大的影响.为了揭示铝合金腐蚀的物理本质,本文利用基于密度泛函理论第一性原理的计算方法,详细计算了铝合金中一些主要第二相(Al_2Cu、Al_3Ti和Al_7Cu_2Fe)的多种晶面的电子功函数,分析了电子从各个晶面逸出的难易,求得了第二相与Al基体的本征电势差,我们发现不同的晶面暴露在合金最外层,会显著地影响本征电势差;即便是同一晶面,暴露在最外层的原子种类和构型不同,对腐蚀的影响也不一样.从电子的层面解释了电偶腐蚀发生的原因.  相似文献   

9.
The structure of FeOx species supported on γ‐Al2O3 was investigated by using Fe K‐edge X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2O3 and co‐gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α‐Fe2O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron‐oxide crystals was not observed at Fe loadings of less than 9.0 wt %. The Fe K‐edge XAFS was characterized by a clear pre‐edge peak, which indicated that the Fe?O coordination structure deviates from central symmetry and that the degree of Fe?O?Fe bond formation is significantly lower than that in bulk samples at low Fe loading (<9.0 wt %). Fe K‐edge extended XAFS oscillations of the samples with low Fe loadings were explained by assuming an isolated iron‐oxide monomer on the γ‐Al2O3 surface.  相似文献   

10.
The effect on AA2024‐T3 of a non‐chromate deoxidizer based on Fe(III)–HF–HNO3 has been examined by atomic force microscopy, x‐ray photoelectron spectroscopy and scanning electron microscopy. Magnesium and silicon present on the surface after alkaline cleaning was removed very rapidly at room temperature. The surface oxide also showed signs of significant attack within a short period of time. Intermetallics were removed almost completely within 10 min. There was evidence of iron deposition from the deoxidizer, which would tend to reduce the corrosion resistance of subsequent conversion coatings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate the effects of laser field intensity over the ground state binding energy of light and heavy hole excitons confined in GaAs/Ga1?xAlx As cylindrical quantum wire. We have applied the variational method using 1s‐hydrogenic wave functions, in the framework of the single band effective mass approximation with the spatial dielectric function. The polaronic effects are included in the calculation to compute the exciton binding energy as a function of the wire radius for different field of laser intensity. The valence‐band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The dressed laser donor binding energies are calculated and compared with the results of binding energy of excitons. The results show that (i) the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, (ii) the heavy‐hole exciton in a cylindrical quantum wire is more strongly bound than the light‐hole exciton, (iii) the values of ground state binding energy for the laser field amplitude α0 = 10 Å resemble with the values of heavy hole exciton binding energy, and (iv) the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Samples of aluminium alloys AA2024‐T3 and AA7075‐T6 were treated with a chromate‐based deoxidizer, then conversion coated with a commercial cobalt‐based solution and finally sealed with a commercial vanadate‐based product. The alloy specimens were examined using scanning electron microscopy, transmission electron microscopy and Rutherford backscattering spectroscopy. The thickness of the cobalt‐based conversion coating increased rapidly up to 5 min of immersion but more slowly for longer times. Sealing resulted in penetration of vanadium through the oxide and a small increase in thickness due to the deposition of a thin sealing coating within the pores and on the external surface of the cobalt‐containing coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
After a laser gas nitriding treatment of the Ti‐7.5Al (atom %) titanium‐based alloy, we used a combination of electron backscattered diffraction (EBSD) in scanning electron microscope and electron probe microanalysis (EPMA) techniques in order to efficiently characterize the different phases in the resolidified layer. Representative measurements of chemical composition and reliable determination of crystal structure were possible for each phase of the complex microstructure. The reaction zone is formed by a mixture of isostructural TiN phases with dendritic and/or ‘coarse’ needles morphology, fixed into a α′‐Ti matrix (martensite) with a thin needle aspect. The nitrogen solubility was found to remain very low in the α′‐Ti matrix (up to 2–3 atom %), while in the TiN phase, an aluminum solubility as high as 4 atom % was measured, reducing drastically the nitrogen content into a Ti79N17Al4 chemical composition. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This study investigated the dependence of the anticorrosion performance of a poly(γ‐glycidoxypropyltrimethoxysilane) (poly(γ‐GPTMS)) sol‐gel coating on AA2024‐T3 aluminum alloy surface state. Two different AA2024‐T3 surface pretreatment procedures were tested: a degreasing with acetone and a chemical multistep etching process (industrial chemical etching pretreatment). Poly(γ‐GPTMS) coatings were deposited onto both pretreated surfaces using the dip‐coating technique. Surfaces were characterized principally by scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared attenuated total reflectance, contact angles, and roughness measurements. Moreover, for the coated AA2024‐T3 surfaces, a pull‐off test was used to evaluate the poly(γ‐GPTMS) adhesion to the pretreated surface. Bare surface properties depended on the applied pretreatment. The chemically etched surface was the roughest and the most concentrated in hydroxyl groups. In addition, comparatively to the degreased surface, it has a more hydrophobic character. Poly(γ‐GPTMS) coating revealed an uneven nature and a poor adhesion once it was deposited onto the degreased surface. Coatings anticorrosion performances were evaluated using electrochemical impedance spectroscopy measurements (EIS). Electrochemical impedance spectroscopy data proved that the sol‐gel coating applied onto the chemically etched surface had better anticorrosion performance.  相似文献   

15.
The solubility of Al2(SO4)3 in H2SO4 at different concentrations was determined and showed a minimum at 95% w/v. Overall kinetic and potentiometric studies of Al anodising were performed in large ranges of concentrations of saturated H2SO4 solutions and current densities. During anodising quasi-steady-state supersaturation and unsaturation conditions for concentrations below and above 95% w/v dominate in the pore-filling solution affecting those in the oxide–electrolyte interface. Interface colloidal Al2(SO4)3 nanoparticles form occupying surface fractions increasing with salt concentration, supersaturation, field strength in the pore base surface and current density increase and temperature decrease. These control the mechanism and kinetics of growth and structural parameters of films and impose the growth of non-pitted uniform films up to current densities higher than in unsaturated baths, more effectively under supersaturation conditions. Well-defined peaks of structural parameters appear depending on thickness and current. Thus optimal regularly grown films of desired nanostructure and the introduction of new anodising technologies can be achieved.  相似文献   

16.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

17.
A carbon film containing 5% TiC particles is formed on a pre‐prepared bronze surface prior to laser treatment. The carbon film provides increased absorption of the incident laser beam and hosts TiC particles with a uniform distribution at the workpiece surface. Optical and scanning electron microscopy are used to examine the metallurgical and morphological changes in the laser treated layer. Micro‐hardness of the laser‐treated surface is measured, and the residual stress formed in the surface vicinity is measured using the X‐ray diffraction technique. It was found that a dense layer with fine grains was formed in the laser‐treated layer. The micro‐hardness of the laser‐treated surface increases almost three times compared with the base material hardness. The presence of a dense layer and the formation of Cu3N in the surface region contribute to the hardness enhancement at the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The Ti–6Al–4V alloy is an important aviation material, but has a poor resistance to slide wear. Laser cladding of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 preplaced powders on the Ti–6Al–4V alloy can form the Ti3Al/γ‐Ni matrix composite coating, which improves the wear resistance of the substrate. In this study, the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 laser‐cladded coating was researched by means of X‐ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The experimental results indicate that under the action of SiC/nano‐CeO2, this composite coating exhibited a fine microstructure. Furthermore, the proper content of nano‐CeO2 decreased the crack tendency. The results above indicated that, it is feasible to improve the tribological property of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 laser‐cladded coating by adding of SiC/nano‐CeO2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Silicic acid produced from sodium metasilicate hydrate and metallocene polyethylene–octene elastomer (POE) were chosen as the ceramic precursor and the continuous phase, respectively, for preparation of new hybrids by an in situ sol–gel process. To obtain a better hybrid, the acrylic acid‐grafted polyethylene–octene elastomer (POE‐g‐AA) prepared in our laboratory and used as the continuous phase was also investigated. Characterizations of POE/SiO2 and POE‐g‐AA/SiO2 composites were performed by Fourier transform infrared spectroscopy, 29Si solid‐state nuclear magnetic resonance (NMR) spectrometry, X‐ray diffractometry, differential scanning calorimetry, thermogravimetry analysis, and an Instron mechanical tester. The POE‐g‐AA/SiO2 hybrid could give the positive effect on the properties of POE/SiO2 hybrid because the carboxylic acid groups of acrylic acid should act as coordination sites for the silica phase to form chemical bonds. The result of 29Si solid‐state NMR spectra showed that Si atom coordination around SiO4 units is predominantly Q3 and Q4. Also, the POE‐g‐AA/SiO2 hybrid with 15 wt % SiO2 gave the maximum values of tensile strength and glass‐transition temperature because excess particles might cause the separation between the organic and inorganic phases when the silica content was beyond this point. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 351–359, 2003  相似文献   

20.
Planar laser‐induced fluorescence (PLIF) enables noninvasive in situ investigations of catalytic flow reactors. The method is based on the selective detection of two‐dimensional absolute concentration maps of conversion‐relevant species in the surrounding gas phase inside a catalytic channel. Exemplarily, the catalytic reduction of NO with hydrogen (2 NO+5 H2→2 H2O+2 NH3) is investigated over a Pt/Al2O3 coated diesel oxidation catalyst by NO PLIF inside an optically accessible channel reactor. Quenching‐corrected 2D concentration maps of the NO fluorescence above the catalytic surface are obtained under both, nonreactive and reactive conditions. The impact of varying feed concentration, temperature, and flow velocities on NO concentration profiles are investigated in steady state. The technique presented has a high potential for a better understanding of interactions of mass transfer and surface kinetics in heterogeneously catalyzed gas‐phase reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号