首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The combination of energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques in scanning electron microscope was employed to characterize the reacted interface between Ti matrix and AlN particles. Due to the high localization of EDS and EBSD, representative measurements of chemical composition and reliable determination of the crystal structure were possible for each phase in the reaction zone with complex morphology. The TiN1−x (cubic, NaCl type), Ti3AlN (cubic, perovskite type) and Ti-rich Ti3 Al (hexagonal, Ni3Sn type) phases were identified in the reaction zone after annealing at 1100 °C. EDS+EBSD combination is an efficient tool for phase analysis at the interface in reactive multicomponent systems. Received August 21, 1999. Revision November 21, 1999.  相似文献   

2.
The regrowth technique of highly doped n‐type GaN layers is reliable and effective for lowering the ohmic contact resistance. The interface between metal contacts with Ti/Al/Ti/Au and regrown n+‐GaN/GaN layers were analyzed in detail with transmission electron microscopy. During the annealing process, Ti metals and N atoms diffusing from GaN layers formed TiN epitaxial layers between metal alloys and n+‐GaN layers. The orientational relationship between GaN and TiN was [1 0 0]GaN//[?1 1 0]TiN verified by nano‐beam diffraction. Al atoms diffused through the GaN layers and formed thin AlGaN phase. Al content was confirmed as 60% by high‐resolution transmission electron microscopy images. Electron energy loss spectroscopy showed that Si dopants were confined within n+‐GaN layers. These results show that in regrowth technique both TiN layers and Si dopants affect the contact properties because the formation of TiN layers can induce nitrogen vacancies from GaN, while Si‐doped GaN layers can enhance the tunneling effect through the metal contacts resulting in reduced contact resistance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Wavelength-dispersive electron probe microanalysis (WDS-EPMA) of TiN/Ti diffusion couples was carried out in order to determine the nitrogen profiles across the phase bands. Thein situ TiN/Ti diffusion couples were used for phase equilibrium studies. The problem of complete overlap of the Ti L1 and N K lines was solved using chemically well-characterized single-phase titanium nitride samples (-Ti(N), -Ti2N and -TiN1–X ) as external standards. By using such homotypic standard materials it was possible to eliminate systematic errors introduced by imperfect correction algorithms. The composition of the phases in multiphase TiN/Ti diffusion couples could be determined with an accuracy of better than ±1 at% N.  相似文献   

4.
 Superhard nanocomposite coatings of different composition in the quasi-binary system TiN–TiB2 were deposited onto stainless steel sheets by means of unbalanced DC magnetron co-sputtering using segmented TiN/TiB2 targets. The chemistry and microstructure of a TiB0.6N0.7 coating was investigated using X-ray and electron diffraction, photoelectron spectroscopy, energy-filtering transmission electron microscopy, and electron energy-loss spectrometry. High resolution elemental mapping of the elements Ti, B, N, and O with energy-filtering TEM reveals a homogeneous distribution on the nanometer scale. X-Ray and electron diffraction exhibit only TiN crystallites of nanometer size, but no information on the boron-rich phase. The near-edge fine structures of the BK and NK ionization edges in the EELS spectra of the Ti–B–N coatings were used to derive information on the phases by comparing the edges with those of reference compounds. It was found that the TiN nanocrystals occur together with TiO x particles; the grains are embedded in a strongly disordered or quasi-amorphous matrix consisting mainly of TiB2 particles and, near the steel substrate, also boron oxide (B2O3).  相似文献   

5.
The TiN(111)/ZrN(111) interface was studied by first‐principles method to provide the theoretical basis for developing the TiN/ZrN coatings. Twelve geometry structures of TiN(111)/ZrN(111) interfaces were established. The calculated interfacial work of adhesion reveals that the N‐terminated TiN/N‐terminated ZrN interface with TL site shows the strongest stability. For this TiN(111)/ZrN(111) interface, the results of the partial density of state indicate that the chemical bonding at the interface appeals both ionic and covalent characteristic, which is same as that in the bulk materials. The partial density of states for Zr, Ti, and N atoms at the interface are very similar with those in the bulk, which reveals that the electronic structure transition at the interface is smooth. The results of charge density and charge density difference demonstrate that the lost charge of Ti atom is larger than that of Zr atom, indicating that TiN is more ionic than ZrN. Calculations of the work of fracture indicate that the mechanical failure of the ZrN(111)/TiN(111) interface will take place at the interface. Besides that, the calculation result of the TiN(111)/ZrN(111) interface implies that the TiZrN2 phase might be formed at the interface because the contacting of the N―N bond is the most stable.  相似文献   

6.
Solution phase reactions between tetrakisdimethylamidotitanium (Ti(NMe2)4) and ammonia yield precipitates with composition TiC0.5N1.1H2.3. Thermogravimetric analysis (TGA) indicates that decomposition of these precursor materials proceeds in two steps to yield rocksalt-structured TiN or Ti(C,N), depending upon the gas atmosphere. Heating to above 700 °C in NH3 yields nearly stoichiometric TiN. However, heating in N2 atmosphere leads to isostructural carbonitrides, approximately TiC0.2N0.8 in composition. The particle sizes of these materials range between 4-12 nm. Heating to a temperature that corresponds to the intermediate plateau in the TGA curve (450 °C) results in a black powder that is X-ray amorphous and is electrically conducting. The bulk chemical composition of this material is found to be TiC0.22N1.01H0.07, or Ti3(C0.17N0.78H0.05)3.96, close to Ti3(C,N)4. Previous workers have suggested that the intermediate compound was an amorphous form of Ti3N4. TEM investigation of the material indicates the presence of nanocrystalline regions <5 nm in dimension embedded in an amorphous matrix. Raman and IR reflectance data indicate some structural similarity with the rocksalt-structured TiN and Ti(C,N) phases, but with disorder and substantial vacancies or other defects. XAS indicates that the local structure of the amorphous solid is based on the rocksalt structure, but with a large proportion of vacancies on both the cation (Ti) and anion (C,N) sites. The first shell Ti coordination is approximately 4.5 and the second-shell coordination ∼5.5 compared with expected values of 6 and 12, respectively, for the ideal rocksalt structure. The material is thus approximately 50% less dense than known Tix(C,N)y crystalline phases.  相似文献   

7.
Summary.  Superhard nanocomposite coatings of different composition in the quasi-binary system TiN–TiB2 were deposited onto stainless steel sheets by means of unbalanced DC magnetron co-sputtering using segmented TiN/TiB2 targets. The chemistry and microstructure of a TiB0.6N0.7 coating was investigated using X-ray and electron diffraction, photoelectron spectroscopy, energy-filtering transmission electron microscopy, and electron energy-loss spectrometry. High resolution elemental mapping of the elements Ti, B, N, and O with energy-filtering TEM reveals a homogeneous distribution on the nanometer scale. X-Ray and electron diffraction exhibit only TiN crystallites of nanometer size, but no information on the boron-rich phase. The near-edge fine structures of the BK and NK ionization edges in the EELS spectra of the Ti–B–N coatings were used to derive information on the phases by comparing the edges with those of reference compounds. It was found that the TiN nanocrystals occur together with TiO x particles; the grains are embedded in a strongly disordered or quasi-amorphous matrix consisting mainly of TiB2 particles and, near the steel substrate, also boron oxide (B2O3). Received October 4, 2001. Accepted (revised) January 10, 2002  相似文献   

8.
Carbon nitride (CNx) bilayer films with Ti and TiN interlayer were synthesized by cathode arc technique at various nitrogen pressures (PN2). The dependences of microstructure and bonding composition of the films on the PN2 and interlayer were analyzed by Raman spectroscopy and X‐ray photoelectron spectroscopy. Microstructure evolution consisting of the ordering and size of Csp2 clusters, the faction of N–sp3/N–sp2 bonds and graphite‐like/pyridine‐like configurations was dominated by PN2, interlayer and annealing. The results showed that Ti and TiN interlayer decrease the atomic ratio of N/C and increase clustering Csp2. High PN2 induces the formation of C ≡ N and C ? N bonds, the increase of sp2‐bonding content and the growth of Csp2 clusters. A large part of nitrogen atoms are coordinated with sp2‐hybridized carbon (minimum 71% for annealed CNx monolayer). TiN/CNx bilayer had a higher content of pyridine‐like configuration. Morphological characteristics of CNx monolayer and bilayer mainly depend on the surface character (roughness and surface energy) of the sublayer. The internal stress in the as‐deposited Ti/CNx bilayer is smaller, but it after annealing is higher than that of CNx monolayer and TiN/CNx bilayer. These results may be of interest for studying the CNx films with controlled bonding composition and expected engineering properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Electron spectroscopic imaging (ESI) in the transmission electron microscope (TEM) is a powerful method to produce 2-dimensional elemental distribution maps. These maps show in a clear way the chemical situation of a small specimen region. In this work we used a Gatan Imaging Filter (GIF) attached to a 200 kV TEM to investigate a Ba-Nd-titanate ceramic. The three phases occuring in this material could be visualized using inner-shell ionization edges (Ba M45, Nd M45 and Ti L23). We applied different image correlation techniques to the ESI elemental maps for direct visualization of the chemical phases. First we simply overlaid the elemental maps assigning each element one colour to form an RGB image. Secondly we used the technique of scatter diagrams to classify the different phases. Finally we quantified the elemental maps by dividing them and multiplying them by the appropriate inner-shell ionization cross-sections which gave atomic ratio images. By using these methods we could clearly identify and quantify the various phases in the Ba-Nd-titanate specimen.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

10.
Laser cladding of the Ti3Al + TiB2 pre‐placed alloy powder on the Ti–6Al–4 V alloy in nitrogen protective atmosphere can form the Ti3Al + TiB2/TiN composite coating, which can dramatically improve the wear resistance of the Ti–6Al–4 V alloy surface. In this study, the Ti3Al + TiB2/TiN composite coatings on the Ti–6Al–4 V alloy have been researched by means of X‐ray diffraction, SEM and energy dispersive spectrometry. It was found that there is a metallurgical combination between the Ti3Al + TiB2/TiN composite coating and the substrate. The microhardness of the Ti3Al + TiB2/TiN composite coatings were 3 ~ 4 times higher than that of the Ti–6Al–4 V alloy because of the actions of the Ti3Al + TiB2/TiN hard phases and the grain refinement strengthening. Moreover, the wear mass losses of the Ti3Al + TiB2/TiN composite coatings were much lower than that of the substrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
N-doped TiO2 nanotubes were produced by anodization of a TiN alloy. The alloy was prepared to contain approximately 5 at.% of N from high-purity Ti and TiN powders using an arc-melting and consisted of a two-phase structure with different N-contents. Anodization of the alloy in fluoride-containing electrolyte results, under optimized conditions, in the growth of an ordered TiO2 nanotube layer on both phases. On the N-rich phase significantly smaller nanotubes are grown while on the low N-concentration phase nanotubes with larger diameter were formed. However, XPS and photoelectrochemical measurements demonstrate successful nitrogen doping of the resulting nanotube layers, which leads to a significant visible photoresponse from this material.  相似文献   

12.
By exploiting solvent and anion effects, [Cp2Ti]+ complexes for atom‐economical catalysis in single‐electron steps were developed and applied for the first time. These complexes constitute remarkably stable and active catalysts for radical arylations. The reaction kinetics and catalyst composition were studied by cyclic voltammetry and in situ IR spectroscopy.  相似文献   

13.
Ti–Si–B–C–N film was deposited by DC magnetron sputtering at different argon and nitrogen ratios such as N2/Ar = 1 : 5, 2 : 4, 3 : 3, 4 : 1 and 5 : 0. The formation of TiN and TiB phases was observed because of incorporation of nitrogen. The hardness, modulus, microstructure, structure and bond formation with different nitrogen contents during the deposition were studied by nanoindentation, scanning electron microscope, X‐ray diffraction and X‐ray photoelectron spectroscopy, respectively. The oxidation kinetics of Ti–Si–B–C–N was investigated. The nitrogen incorporation during deposition influences different properties of the coating. Hardness and modulus decreased, and microstructure showed very fine grain presence, and film changes to fully amorphous because of incorporation of nitrogen in the film. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The enol forms of uracil and its derivatives were detected in the gas phase by mass spectrometry. The [M - H] ion is produced by resonance electron capture to the lowest unoccupied molecular orbitals, the process being accompanied by the detachment of the hydrogen atom from the nitrogen atom of the diketo form (low-energy peak at 0.8 eV) and from the oxygen atom of the enol form (in the energy region of 1.4 eV). The gas phase contains ∼10−3% of the enol form. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1360–1362, June, 2005.  相似文献   

15.
Ion beam analysis (IBA) techniques were applied successfully to the investigation of non‐corroded and artificially corroded patina layers grown on copper substrates in order to explore their potential use in the study of degradation phenomena of copper and copper alloys subjected to chemical treatment and exposed to selected environmental conditions. Rutherford backscattering spectroscopy (RBS) with deuterons as projectiles and the nuclear reactions 16O(d,p)17O and 32S(p,p′γ)32S were applied to the investigation of the depth distribution of oxygen and sulphur in near‐surface layers of synthetic patina consisting of mineral phases corresponding to chalcanthite as well as to cuprite + chalcanthite and antlerite + brochantite + chalcanthite. Electrochemical techniques (potentiodynamic polarization and cyclic voltammetry in 0.5 M Na2SO4) were used for artificial acceleration and study of the corrosion processes, and scanning electron microscopy (SEM/EDS) was used for examination of the surface morphology of the samples. A patinated roof sample from the Vienna Hofburg also was investigated using the same techniques. The measurement showed that IBA can provide valuable information for the study of patina near‐surface layers of thickness up to a few micrometres and indicated that cuprite was the mineral phase primarily formed on the copper substrates and the main component of the interface between the patina layer and the metallic substrate. The investigated copper patinas looked rather heterogeneous and were characterized by high porosity. Mixed patinas exhibited considerable stability to further corrosive attack. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Within the framework of the study of industrial nitriding of steel, AES was chosen as the principle analysis technique. In order to characterise the nitrided layers quantitatively, reliable sensitivity factors were needed. For that purpose, different reference samples containing the pure γ′‐Fe4N1?x and ε‐Fe2N1?z phases were prepared by gaseous nitriding of pure iron. The characterisation of these references by means of electron probe microanalysis (EPMA) is discussed. The first sample contained a nitrided layer with large γ′‐Fe4N1?x grains (~30 µm) with 19.6 at.% nitrogen on top of an iron substrate. The second one contained an ε‐Fe2N1?z outer layer (~6 µm) with 26 at.% nitrogen, on a γ′‐Fe4N1?x layer (~4 µm) with 19.8 at.% nitrogen, created on top of an iron substrate. In this study, Fe LMM and N KLL Auger electron spectral lines were acquired on the pure γ′‐Fe4N1?x and ε‐Fe2N1?z phases of these two reference samples in order to calculate the sensitivity factors of iron and nitrogen. Different Auger intensities were considered and compared. It was decided to use the peak areas of the direct Auger electron spectral lines. The values of the sensitivity factors are 0.74 for iron and 0.33 for nitrogen. Finally, a set of three independent and well‐characterised samples containing the γ′‐Fe4N1?x and ε‐Fe2N1?z phases was used to validate the elaborated quantification procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The ferromagnetic and nonmagnetic phases of 2‐D Wigner electron crystal are investigated using a localized representation for the electrons. The ground‐state energies of ferromagnetic and nonmagnetic phases of 2‐D Wigner electron crystal are computed in the range of rs = 10–200. The low density favorable for Wigner crystallization is found to be 2.85 × 1013 e cm?2 for ferromagnetic phase and 5.07 × 1013 e cm?2 for the nonmagnetic phase of 2‐D Wigner electron crystal. For the given structure, the ground‐state energies of ferromagnetic and nonmagnetic phases are compared. It is found that the energy of the ferromagnetic phase is less than that of the nonmagnetic phase of the 2‐D Wigner electron crystal. Also, the results are compared with various experimental and theoretical works and it is found that our results are in good agreement with the experimental and other theoretical results for the 2‐D Wigner electron crystal. The structure‐dependent Wannier functions, which give proper localized representation for Wigner electrons, are employed in the calculation. The role of correlation energy is suitably taken into account. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

18.
 Sputtered (Ti,Al)N hard coatings are successfully used for dry high speed cutting. These films show a lower oxidation rate than TiN or TiC coatings. In our work (Ti,Al)N films were deposited on WC-6%Co substrates at a temperature of 490°C by plasma-assisted chemical vapour deposition (PACVD) using a gas mixture of TiCl4/AlCl3/N2/Ar/H2. Investigation of microstructure, crystalline structure and chemical composition was carried out using SEM, WDXS, TEM, AES and XRD techniques. The chemical composition of the deposited films showed a Al to Ti ratio of 1.33. The film thickness was 5.5 μm. Films showed a fine crystalline size, the metastable fcc crystal structure and a columnar growth. The film surface was under low compressive stress up to several 100 MPa. For (Ti,Al)N/WC-Co compounds the oxidation behaviour up to 1100°C (high temperature range) was studied. Therefore, samples were annealed or rapidly heated in air and under high vacuum condition using the laser shock method. The results show decomposition of the (Ti,Al)N structure to the TiN and the AlN phases at temperature values above 900°C. Heating in air causes growing of a thin aluminum oxide layer at the film surface, which is a barrier for further oxygen diffusion to the alumina-film boundary. Additionally, at temperatures above 900°C oxidation of the WC-6%Co substrate surface was obtained in regions of opened cracks and film delamination.  相似文献   

19.
The methyl viologen dication, used under the name Paraquat as an agricultural reagent, is a well‐known electron‐acceptor species that can participate in charge‐transfer (CT) interactions. The determination of the crystal structure of this species is important for accessing the CT interaction and CT‐based properties. The title hydrated salt, bis(1,1′‐dimethyl‐4,4′‐bipyridine‐1,1′‐diium) hexacyanidoferrate(II) octahydrate, (C12H14N2)2[Fe(CN)6]·8H2O or (MV)2[Fe(CN)6]·8H2O [MV2+ is the 1,1′‐dimethyl‐4,4′‐bipyridine‐1,1′‐diium (methyl viologen) dication], crystallizes in the space group P 21/c with one MV2+ cation, half of an [Fe(CN)6]4− anion and four water molecules in the asymmetric unit. The FeII atom of the [Fe(CN)6]4− anion lies on an inversion centre and has an octahedral coordination sphere defined by six cyanide ligands. The MV2+ cation is located on a general position and adopts a noncoplanar structure, with a dihedral angle of 40.32 (7)° between the planes of the pyridine rings. In the crystal, layers of electron‐donor [Fe(CN)6]4− anions and layers of electron‐acceptor MV2+ cations are formed and are stacked in an alternating manner parallel to the direction of the −2a + c axis, resulting in an alternate layered structure.  相似文献   

20.
The role of adenine (A) derivatives in DNA damage is scarcely studied due to the low electron affinity of base A. Experimental studies demonstrate that low‐energy electron (LEE) attachment to adenine derivatives complexed with amino acids induces barrier‐free proton transfer producing the neutral N7‐hydrogenated adenine radicals rather than conventional anionic species. To explore possible DNA lesions at the A sites under physiological conditions, probable bond ruptures in two models—N7‐hydrogenated 2′‐deoxyadenosine‐3′‐monophosphate (3′‐dA(N7H)MPH) and 2′‐deoxyadenosine‐5′‐monophosphate (5′‐dA(N7H)MPH), without and with LEE attachment—are studied by DFT. In the neutral cases, DNA backbone breakage and base release resulting from C3′?O3′ and N9?C1′ bond ruptures, respectively, by an intramolecular hydrogen‐transfer mechanism are impossible due to the ultrahigh activation energies. On LEE attachment, the respective C3′?O3′ and N9?C1′ bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions via a pathway of intramolecular proton transfer (PT) from the C2′ site of 2′‐deoxyribose to the C8 atom of the base moiety become effective, and this indicates that substantial DNA backbone breaks and base release can occur at non‐3′‐end A sites and the 3′‐end A site of a single‐stranded DNA in the physiological environment, respectively. In particular, compared to the results of previous theoretical studies, not only are the electron affinities of 3′‐dA(N7H)MPH and 5′‐dA(N7H)MPH comparable to those of hydrogenated pyrimidine derivatives, but also the lowest energy requirements for the C3′?O3′ and N9‐glycosidic bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions, respectively, are comparable to those for the C3′?O3′ and N1‐glycosidic bond cleavages in corresponding anionic hydrogenated pyrimidine derivatives. Thus, it can be concluded that the role of adenine derivatives in single‐stranded DNA damage is equally important to that of pyrimidine derivatives in an irradiated cellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号