首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
李凤斌  董绍俊 《化学学报》1989,47(3):233-239
电活性质点Fe^3^+可穿透六氰亚铁钒薄膜在玻璃碳基体电极表面于较负电位处直接氧化, 也可经VHF膜中氧化还原点位的媒介在较正电位处理膜-溶液界面及膜内部发生催化氧化. 两个过程分别在用VHF修饰过的旋转GC电极上的伏安曲线中产生, 可明确分辨的第一波和第二波. 第一波的极限电流受Fe^2^+离子在溶液中和膜中的扩散速率控制.VHF薄膜对Fe^2^+离子的透过能力, kDm/d, 为10^-^3-10^-^2cm.s^-^1数量级, 随膜厚度增大而减小, 不随溶液中Fe^2^+离子浓度改变.  相似文献   

2.
选择性膜电极研究表面活性剂与大分子的相互作用   总被引:2,自引:2,他引:2  
结合本实验室的工作介绍了表面活性剂选择性膜电极研究表面活性剂与大分子相互作用的实验装置和原理,并综述了表面活性剂选择性膜电极在研究离子型表面活性剂及其二元混合体系与不同类型大分子之间相互作用中的应用.讨论了大分子的分子量、外加盐和表面活性剂的结构对表面活性剂和大分子之间相互作用的影响结果.  相似文献   

3.
以Nafion修饰的镀铂玻碳电极为基底的半乳糖传感器的制备   总被引:3,自引:0,他引:3  
纪学锋  章咏华 《分析化学》1993,21(5):519-522
在镀铂的玻碳电极表面,修饰一层全氟代磺酸酯(Nafion)膜,制成基底电极。用化学交联法将半乳糖氧化酶(GAD)固定在基底电极表面,即制成半乳糖传感器。和光亮铂相比,镀铂电极对过氧化氢有更高的响应,而Nafion膜可以消除抗坏血酸,尿酸等电活性物质对测定的影响,提高了酶电极测定的选择性。D-半乳糖测定的线性范围为0.25~4.25 mmol/L,响应时间小于30s。电极连续使用300次,没有明显的电流变化。该电极具有快速、准确,选择性高的特点。  相似文献   

4.
以聚邻苯二胺修饰的镀铂玻碳电极为基底的葡萄糖传感器   总被引:1,自引:0,他引:1  
生物电化学传感器所面临的主要问题,就是干扰和污染。具有选择渗透性的聚合物膜可以防止电活性物质到达电极表面和大分子物质对基底电极的污染,提高电极的选择性,延长使用寿命。这方面的报道已很多。电聚合的邻苯二胺膜的选择渗透性已有报道。其优点是薄(<10nm),且具有自身的绝缘性,可以被均匀地聚合在电极表面。我们用这种聚合物膜修饰电极为基底电极,化学交联法将葡萄糖氧化酶(GOD)固定在基底电极表面,制备了葡萄糖  相似文献   

5.
钠离子选择性电极可用来测量体液及体表面钠离子进行疾病的诊断及监测,钠玻璃微电极巳用于研究心肌及神经细胞内钠离子的生理、病理作用[1-4]。液膜型钠离子选择性微电极制作方便,内阻较小,亦有报导[5]。本工作采用N,N′-双二苄基-3,6-二氧杂辛二酰胺为活性物质,癸二酸二丁酯为增塑剂研制了一种PVC膜钠离子选择性双管复合型微电极。探讨了该微电极在生物医学测量中的适用性。该微电极性能良好,对K+的选择性同文献报道的同类电极[6]相近,而抗Ca2+、Mg2+等离子的干扰能力有较大的提高。  相似文献   

6.
本文采用浸渍涂覆法成功制备出多孔Ti负载纳米Co3O4电催化膜电极(Co3O4/Ti),以该膜电极为阳极,辅助电极为阴极,构建电催化膜反应器(electrocatalytic membrane reactor,ECMR)用于可控催化氧化苯甲醇制备苯甲醛和苯甲酸,并考察了 Co3O4/Ti 膜电极结构、电化学性能以及ECMR不同操作参数对苯甲醇转化率、苯甲醛和苯甲酸选择性的影响. 结果表明,负载Co3O4纳米颗粒可以显著提高Ti膜电极的电化学性能和催化活性. 在常温常压下,当反应物苯甲醇浓度为10 mmol·L-1,pH为7.0,停留时间为5.0 min,电流密度为2.5 mA·cm-2,苯甲醇的转化率达到49.8%,苯甲醛选择性为51.5%,苯甲酸选择性为23.6%.  相似文献   

7.
用维生素B1(VB1)在金电极上进行自组装,制备了VB1自组装膜修饰金电极(VB1-Au/SAMs/CME).利用循环伏安法初步研究了此自组装单分子膜修饰电极的电化学行为.结果表明: VB1在金电极表面具有特性吸附.以\3-/ 4-氧化还原电对为探针,考察了VB1自组装膜修饰金电极的电化学性质, VB1自组装膜的存在对\3-/4-的电子转移具有明显的阻碍作用.研究了多巴胺(DA)和尿酸(UA)在此电极上的电化学行为.实验结果表明, DA和UA在此电极上均可被电催化氧化.差分脉冲伏安(DPV)氧化峰电流与DA浓度在2.0×10-5~4.0×10-4 mol/L范围内呈线性关系;测定UA的线性范围为6.0×10-5~2.2×10-4 mol/L,而且可实现这两种物质的同时测定.  相似文献   

8.
不同电极材料和不同酸介质对3-甲基吡啶电氧化的影响   总被引:1,自引:0,他引:1  
在以质子交换膜为隔膜的电解池内,通过3-甲基吡啶在PbO2/Ti、SnO2/Ti、石墨和MnO2/Ti电极上的电氧化研究发现,在硫酸溶液中,PbO2电极是催化活性最高的工作电极.通过3-甲基吡啶在硫酸、高氯酸、磷酸和乙酸介质中的电氧化研究发现,对于PbO2电极,硫酸是最适合的介质.利用循环伏安实验和恒电位电解实验,研究了电氧化条件和电催化活性,比较了各种条件下的电流效率和选择性.  相似文献   

9.
"钛/TiO2氧化膜/溶液"界面电极体系的电化学性能主要决定于钛表面的TiO2氧化物膜.本文利用多种电化学技术,结合半导体物理的Mott-Schottky分析和Einstein方程,研究了金属钛在1.0mol·L-1HClO4溶液中表面半导体TiO2氧化膜的生长及氧化膜中氧空位点缺陷在外加电场作用下的传输性能,并根据离子性电荷传输与电子性电荷传输对电场变化响应时间之不同特点,确定氧化膜中点缺陷扩散系数.结果表明,电极电位或阳极析氧反应对稳态电流(iss)、氧化膜的阳极化常数(α)、膜中电场强度()、以及膜中氧空位点缺陷的扩散系数(D0)等重要物理化学参数,均有显著影响,并依据氧化膜中的结构变化进行分析.  相似文献   

10.
利用L-半胱氨酸自组装膜修饰金电极(L-Cys,Au/SAMs), 在0.05mol/L H_2SO_4 底液中研究了 Na_2SeO_3 的电化学特性.在0.00~1.30 V (vs. SCE) 电位范围内对微量Na_2SeO_3进行循环伏安扫描,发现L-Cys, Au/SAMs修饰电极在峰电位0.89 V处有灵敏的Se的氧化溶出峰.通过比较裸金电极和修饰电极在Na_2SeO_3 溶液中的电化学特性发现,修饰电极通过巯基中的S与Na_2SeO_3发生氧化还原作用生成Se,且修饰电极对沉积在电极表面的Se的氧化过程具有催化作用.根据Na_2SeO_3在单分子膜上的电化学行为,提出了单分子膜中硫(Au-S)与Se(Ⅳ)作用生成Se的反应机理、Se电化学催化氧化机理及巯基化合物通过生成纳米硒生物吸收Se的类生物膜模型.  相似文献   

11.
Blaz T  Migdalski J  Lewenstam A 《Talanta》2000,52(2):319-328
This paper shows the application of conducting polymers (CPs) for constructing potentiometric indicator electrodes. Two types of polypyrrole (PPy)-based calcium sensors are presented, one sensor with PPy-calcion film as the active part and the other sensor with PPy-calcion as a solid-state contact coated with a conventional membrane selective towards calcium ions. It is shown that the PPy-calcion film, due to the complexing properties of calcion ensuring high loading of the film with calcium, is sufficiently selective to be used as the active part or as a mediating layer of the indicator electrode. The electrode, with PPy-calcion film as the active part, was used as the indicator electrode in potentiometric titrations of calcium in mixed solvents, where conventional PVC-based electrode can not be used. For the first time, the practical applicability of PPy-based electrodes in titrations is demonstrated.  相似文献   

12.
《Analytical letters》2012,45(16):3038-3049
Abstract

The lead(II) ion selective solid‐contact electrode based on polypyrrole film, covered with a polyvinyl chloride membrane has been prepared. Polypyrrole film was used as a mediating layer of the solid‐contact electrode due to the conductivity. Crown ether has been used as ionophores in polyvinyl chloride cocktail solutions. This solid‐contact electrode based on benzo‐15‐crown‐5 exhibited Nernstian‐response within 30 s response time over concentration range, 1×10?1~5×10?7 M. The selectivity of this electrode to other metal cations was comparatively good. This electrode showed much better results, such as detection range, slope, response time and reproducibility than conventional ion selective electrode and coated wire electrode.  相似文献   

13.
Redox ions are deposited on a polyelectrolyte‐coated gold electrode by an electric field to fabricate an ion‐selective thin film electrode. The Fe(CN)${{{4- \hfill \atop 6\hfill}}}$ ions are deposited on a few monolayer‐coated polyelectrolyte gold electrode by a slow periodic potential cycle. The deposition process and electrode properties are quantitatively and simultaneously monitored by cyclic voltammetry and a novel technique, using a Scanning Electrometer for Electrical Double‐layers (SEED). No redox properties are obtained without the electric‐field‐deposition. Owing to the redox mediation and net charge due to the redox ion, the electrode is ion‐selective. We demonstrate the principle to detect 1 µM of dopamine in a mixture with 1 mM of ascorbic acid.  相似文献   

14.
《Electroanalysis》2004,16(21):1777-1784
The surface of boron‐doped diamond (BDD) electrode is modified by the polymer film for the first time. The cationic polymer film of N,N‐dimethylaniline (DMA) is electrochemically deposited on BDD electrode surface. This polymer (PDMA) film‐coated BDD electrode is used as a sensor which selectively detect dopamine (DA) in the presence of ascorbic acid (AA). This electrode also can detect both DA and its metabolite, 3,4‐dihydroxy phenyl acetic acid (DOPAC) in the presence of AA in the range of the physiological concentrations of these species. Favorable ionic interaction (i.e., electrostatic attraction) between the PDMA film and AA or DOPAC lowers their oxidation potentials and enhances the current response for AA and DOPAC compared to that at the bare electrode. The PDMA film also shows a hydrophobic interaction with DA and DOPAC. In cyclic voltammetric measurements, the PDMA film‐coated electrode can successfully separate the oxidation potentials for AA and DA coexisting in the same solution and the separation is about 200 mV. AA oxidizes at more negative potential than DA. In square‐wave voltammetry, the sensitivity of the PDMA film‐coated BDD electrode for DA in the presence of higher concentration of AA is higher than that of the PDMA film‐coated glassy carbon electrode. The hydrodynamic amperometric experiments confirm that the oxidation of AA is not affected by the oxidized product of DA and vice versa. So, unlike the bare electrode the catalytic oxidation of AA by the oxidized DA is eliminated at the PDMA film‐coated BDD electrode. The sensitivities of the modified electrode for AA, DA and DOPAC, which are present in the same solution with their physiological concentration ratios, are calculated to be 0.070, 0.363 and 0.084 μA μM?1, respectively. The modified electrode exhibits a stable and sensitive response to DA.  相似文献   

15.
Highly sensitive catalase electrodes for sensing hydrogen peroxide have been fabricated based on polypyrrole films with microcontainers. The microcontainers have a cup-like morphology and are arranged in a density of 4000 units cm^-2. Catalase was immobilized into the polypyrrole films with microcontainers (Ppy-mc), which were coated on a Pt substrate electrode. The catalase/Ppy-mc/Pt electrode showed linear response to hydrogen peroxide in the range of 0-18 mmol/L at a potential of-0.3 V (versus SCE). Its sensitivity was measured to be approximately 3.64 μA (mmol/L) ^-1 cm^- 2, which is about two times that of the electrode fabricated from a flat Ppy film (catalase/Ppy-flat/Pt electrode). The electrode is highly selective for hydrogen peroxide and its sensitivity is interfered by potential interferents such as ascorbic acid, urea and fructose. Furthermore, such catalase electrodes showed long-term storage stability of 15 days under dry conditions at 4℃.  相似文献   

16.
Kumar SA  Tang CF  Chen SM 《Talanta》2008,74(4):860-866
Here, we described a new method for electrochemically selective detection of dopamine (DA). In this report, for the first time, electrochemical polymerization of 4-amino-1-1'-azobenzene-3,4'-disulfonic acid (acid yellow 9 dye (AY)) was carried out onto the surface of glassy carbon (GC) electrode and indium tin oxide coated electrode (ITO) from acidic solution containing AY monomers. A polymerized film of acid yellow on the surface of a glassy carbon electrode was characterized by cyclic voltammetry (CV). The redox response of the poly(AY) film on the GC electrode showed a couple of redox peak in 0.1M sulfuric acid solution and the pH dependent peak potential was -58mV/pH which was close to the Nernst behavior. The poly(AY) film-coated GC electrode (GC/PAY) exhibited excellent electrocatalytic activity towards the oxidations of dopamine (DA) in 0.1M phosphate buffer solution (PBS, pH 7.0) and increased the anodic peak current three time higher than bare GC electrode. GC/PAY did not reduce the considerable overpotential for oxidation of DA when compare to bare GC electrode. However, in contrast to other polymer modified electrode, due to the strong negatively charged back bone of poly(AY) highly repelled the important interference of DA, such as ascorbic acid (AA), uric acid (UA) and reduced form of nicotinamide adenine dinucleotide (NADH) in 0.1M PBS (pH 7.0) and did not showed any response for oxidation of these interferences. This behavior makes the GC/PAY for selective detection of DA in the presence of higher concentrations AA, UA and NADH. Using differential pulse voltammetry the calibration curves for DA were obtained over the range of 1-100muM with good selectivity and sensitivity. The proposed method provides a simple method for selective detection of DA from its interferences.  相似文献   

17.
Kumar SA  Tang CF  Chen SM 《Talanta》2008,76(5):997-1005
We report a new method for selective determination of acetaminophen (AP) in physiological condition. A new hybrid film modified electrode was fabricated using inorganic semiconducting nano-TiO(2) particles and redox active polymer. Redox polymer, poly(acid yellow 9) (PAY) was electrochemically deposited onto nano-TiO(2) coated glassy carbon (GC) electrode. Surface characterizations of modified electrode were investigated by using atomic force microscope and scanning electron microscope. The PAY/nano-TiO(2)/GC hybrid electrode shows stable redox response in the pH range 1-12 and exhibited excellent electrocatalytic activities towards AP in 0.1M phosphate buffer solution (pH 7.0). Consequently, a simple and sensitive electroanalytical method was developed for the determination of AP. The oxidation peak current was proportional to the concentration of acetaminophen from 1.2 x 10(-5) to 1.20 x 10(-4)M and the detection limit was found to be 2.0 x 10(-6)M (S/N=3). Possible interferences were tested and evaluated that it could be possible to selective detection of AP in the presences of dopamine, nicotinamide adenine dinucleotide (NADH), ascorbic acid and uric acid. The proposed method was used to detect acetaminophen in commercial drugs and the obtained results are satisfactory.  相似文献   

18.
本文以涂丝Ag-Ag2S电极为指示电极,饱和甘汞电极和自制锑电极为参比电极,分别试验了加入阳离子、阴离子和非离子表面活性剂对电极灵敏度的影响。结果表明,加入非离子表面活性剂对电极响应无明显影响,但阴离子和阳离子表面活性剂可使电极灵敏度有较大提高;其中,十六烷基三甲基溴化铵(CTMAB)和十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)对电极的增敏效果显著,可使电极响应线性范围下限扩大一个数量级左右,且电极响应时间缩短,稳定性提高。  相似文献   

19.
Poly(malachite green) film modified Nafion‐coated glassy carbon electrodes have been prepared by potentiodynamic cycling in malachite green solution. The pH of polymerisation solution has only minor effect on film formation. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the growth of the poly(malachite green) film. Cyclic voltammogram of the poly(malachite green) film shows a redox couple with well‐defined peaks. The redox response of the modified electrode was found to be depending on the pH of the contacting solution. The peak potentials were shifted to a less positive region with increasing pH and the dependence of the peak potential was found to be 56 mV per pH unit. The electrocatalytic behavior of poly(malachite green) film modified Nafion‐coated glassy carbon electrodes was tested towards oxidation of NADH, dopamine, and ascorbic acid. The oxidation of dopamine and ascorbic acid occurred at less positive potential on poly(malachite green) film compared to bare glassy carbon electrode. In the case of NADH, the overpotential was reduced substantially on modified electrode. Finally, the feasibility of utilizing poly(malachite green) film electrode in analytical estimation of ascorbic acid was demonstrated in flow injection analysis.  相似文献   

20.
We investigated a L ‐phenylalanine (L ‐phe) biosensor, functionalized through enzyme immobilization on a polymer‐blend film. The electron mediator 3,4‐dihydroxybenzaldehyde (3,4‐DHB) was employed at the electrode surface to improve direct oxidation of NADH to NAD+ and no additional reagents is required to be added to the sample solution. The bioactivated electrode was coated with a semi‐permeable cellulose acetate membrane in order to prevent dissolution of biofunctionalized polymer‐blend film. This constructed enzyme electrode is the first selective biosensor for phenylketonuria (PKU) detection. The sensitivity of the enzyme electrode was determined as 12.014 mA/M cm2. The Michaelis–Menten and current responses as well as sensitivity of the electrode showed improved values than those of previous works. This selective biosensor presented an excellent electroanalytical response for L ‐phe, with a high steady‐state current being obtained after 20 s. The sensitivity of our biodevice is quite sufficient for the purpose of PKU detection because the reference range of clinical concern for L ‐phenylalanine concentration is CL ‐phe>0.5 mM. This surface‐bioactivated enzyme electrode retained more than 80 % of its electrocatalytic activity after 16 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号