首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Detailed knowledge of the molecular mechanisms that control the spectral properties in the rhodopsin protein family is important for understanding the functions of these photoreceptors and for the rational design of artificial photosensitive proteins. Here we used a high-level ab initio QM/MM method to investigate the mechanism of spectral tuning in the chloride-bound and anion-free forms of halorhodopsin from Natronobacterium pharaonis (phR) and the interprotein spectral shift between them. We demonstrate that the chloride ion tunes the spectral properties of phR via two distinct mechanisms: (i) electrostatic interaction with the chromophore, which results in a 95 nm difference between the absorption maxima of the two forms, and (ii) induction of a structural reorganization in the protein, which changes the positions of charged and polar residues and reduces this difference to 29 nm. The present study expands our knowledge concerning the role of the reorganization of the internal H-bond network for color tuning in general and provides a detailed investigation of the tuning mechanism in phR in particular.  相似文献   

2.
The absorption spectrum of the all-trans retinal chromophore in the protonated Schiff-base form, that is, the biologically relevant form, has been measured in vacuo, and a maximum is found at 610 nm. The absorption of retinal proteins has hitherto been compared to that of protonated retinal in methanol, where the absorption maximum is at 440 nm. In contrast, the new gas-phase absorption data constitute a well-defined reference for spectral tuning in rhodopsins in an environment devoid of charges and dipoles. They replace the misleading comparison with absorption properties in solvents and lay the basis for reconsidering the molecular mechanisms of color tuning in the large family of retinal proteins. Indeed, our measurement directly shows that protein environments in rhodopsins are blue- rather than red shifting the absorption. The absorption of a retinal model chromophore with a neutral Schiff base is also studied. The data explain the significant blue shift that occurs when metharhodopsin I becomes deprotonated as well as the purple-to-blue transition of bacteriorhodopsin upon acidification.  相似文献   

3.
The protein environments surrounding the retinal tune electronic absorption maximum from 350 to 630 nm. Hybrid quantum mechanical/molecular mechanical (QM/MM) methods can be used in calculating excitation energies of retinal in its native protein environments and in studying the molecular basis of spectral tuning. We hereby review recent QM/MM results on the phototransduction of bovine rhodopsin, bacteriorhodopsin, sensory rhodopsin II, nonretinal photoactive yellow protein and their mutants.  相似文献   

4.
Proteorhodopsin (PR) is a photoactive proton pump found in marine bacteria. There are two phenotypes of PR exhibiting an environmental adaptation to the ocean's depth which tunes their maximum absorption: blue-absorbing proteorhodopsin (BPR) and green-absorbing proteorhodopsin (GPR). This blue/green color-shift is controlled by a glutamine to leucine substitution at position 105 which accounts for a 20 nm shift. Typically, spectral tuning in rhodopsins is rationalized by the external point charge model but the Q105L mutation is charge neutral. To study this tuning mechanism, we employed the hybrid QM/MM method with sampling from molecular dynamics. Our results reveal that the positive partial charge of glutamine near the C14−C15 bond of retinal shortens the effective conjugation length of the chromophore compared to the leucine residue. The derived mechanism can be applied to explain the color regulation in other retinal proteins and can serve as a guideline for rational design of spectral shifts.  相似文献   

5.
Phoborhodopsin (pR or sensory rhodopsin II, sRII) or pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II, psRII) has a unique absorption maximum (lambda max) compared with three other archaeal rhodopsins: lambda max of pR or ppR at ca 500 nm and others at 560-590 nm. Alignment of amino acid sequences revealed three sites characteristic of the shorter wavelength-absorbing pigments. The amino acids of these three sites are conserved completely among archaeal rhodopsins having longer lambda max, and are different from those of pR or ppR. We replaced these amino acids of ppR with amino acids corresponding to those of bacteriorhodopsin, Val-108 to Met, Gly-130 to Ser and Thr-204 to Ala. The lambda max of V108M mutant was 502 nm with a slight redshift. G130S and T204A mutants had lambda max of 503 and 508 nm, respectively. Thus, each site contributes only a small effect to the color tuning. We then constructed three double mutants and one triple mutant. The opsin-shifts of these mutants suggest that Val-108 and Thr-204 or Gly-130 are synergistic, and that Gly-130 and Thr-204 work additively. Even in the triple mutant, the lambda max was 515 nm, an opsin-shift only ca 30% of the shift value from 500 to 560 nm. This means that there is another yet unidentified factor responsible for the color tuning.  相似文献   

6.
The physico‐chemical properties as well as the conformation of the cytoplasmic surface of the 7‐helix retinal proteins bacteriorhodopsin (bR) and visual rhodopsin change upon light activation. A recent study found evidence for a transient softening of bR in its key intermediate M [Pieper et al. (2008) Phys. Rev. Lett. 100 , 228103] as a direct proof for the functional significance of protein flexibility. In this report we compare environmental and flexibility changes at the cytoplasmic surface of light‐activated bR and rhodopsin detected by time‐resolved fluorescence spectroscopy. The changes in fluorescence of covalently bound fluorescent probes and protein real‐time dynamics were investigated. We found that in fluorescently labeled bR and rhodopsin the intensity of fluorescein and Atto647 increased upon formation of the key intermediates M and metarhodopsin‐II, respectively, suggesting different surface properties compared to the dark state. Furthermore, time‐resolved fluorescence anisotropy experiments reveal an increase in steric restriction of loop flexibility because of changes in the surrounding protein environment in both the M‐intermediate as well as the active metarhodopsin‐II state. The kinetics of the fluorescence changes at the rhodopsin surface uncover multiple transitions, suggesting metarhodopsin‐II substates with different surface properties. Proton uptake from the aqueous bulk phase correlates with the first transition, while late proton release seems to parallel the second transition. The last transition between states of different surface properties correlates with metarhodopsin‐II decay.  相似文献   

7.
Rational design of light‐capturing properties requires understanding the molecular and electronic structure of chromophores in their native chemical or biological environment. We employ here large‐scale quantum chemical calculations to study the light‐capturing properties of retinal in recently designed human cellular retinol binding protein II (hCRBPII) variants (Wang et al. Science, 2012 , 338, 1340–1343). Our calculations show that these proteins absorb across a large part of the visible spectrum by combined polarization and electrostatic effects. These effects stabilize the ground or excited state energy levels of the retinal by perturbing the Schiff‐base or β‐ionone moieties of the chromophore, which in turn modulates the amount of charge transfer within the molecule. Based on the predicted tuning principles, we design putative in silico mutations that further shift the absorption properties of retinal in hCRBPII towards the ultraviolet and infrared regions of the spectrum.  相似文献   

8.
Combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics simulations of bacteriorhodopsin (bR) in the membrane matrix have been carried out to determine the factors that make significant contributions to the opsin shift. We found that both solvation and interactions with the protein significantly shifts the absorption maximum of the retinal protonated Schiff base, but the effects are much more pronounced in polar solvents such as methanol, acetonitrile, and water than in the protein environment. The differential solvatochromic shifts of PSB in methanol and in bR leads to a bathochromic shift of about 1800 cm(-1). Because the combined QM/MM configuration interaction calculation is essentially a point charge model, this contribution is attributed to the extended point-charge model of Honig and Nakanishi. The incorporation of retinal in bR is accompanied by a change in retinal conformation from the 6-s-cis form in solution to the 6-s-trans configuration in bR. The extension of the pi-conjugated system further increases the red-shift by 2400 cm(-1). The remaining factors are due to the change in dispersion interactions. Using an estimate of about 1000 cm(-1) in the dispersion contribution by Houjou et al., we obtained a theoretical opsin shift of 5200 cm(-1) in bR, which is in excellent agreement with the experimental value of 5100 cm(-1). Structural analysis of the PSB binding site revealed the specific interactions that make contributions to the observed opsin shift. The combined QM/MM method used in the present study provides an opportunity to accurately model the photoisomerization and proton transfer reactions in bR.  相似文献   

9.
Molecular dynamics simulations and combined quantum mechanical and molecular mechanical calculations have been performed to investigate the mechanism of the opsin shift and spectral tuning in rhodopsin. A red shift of -980 cm(-1) was estimated in the transfer of the chromophore from methanol solution environment to the protonated Schiff base (PSB)-binding site of the opsin. The conformational change from a 6-s-cis-all-trans configuration in solution to the 6-s-cis-11-cis conformer contributes additional -200 cm(-1), and the remaining effects were attributed to dispersion interactions with the aromatic residues in the binding site. An opsin shift of 2100 cm(-1) was obtained, in reasonable accord with experiment (2730 cm(-1)). Dynamics simulations revealed that the 6-s-cis bond can occupy two main conformations for the β-ionone ring, resulting in a weighted average dihedral angle of about -50°, which may be compared with the experimental estimate of -28° from solid-state NMR and Raman data. We investigated a series of four single mutations, including E113D, A292S, T118A, and A269T, which are located near the PSB, along the polyene chain of retinal and close to the ionone ring. The computational results on absorption energy shift provided insights into the mechanism of spectral tuning, which involves all means of electronic structural effects, including the stabilization or destabilization of either the ground or the electronically excited state of the retinal PSB.  相似文献   

10.
We have investigated geometries and excitation energies of bovine rhodopsin and some of its mutants by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in ONIOM scheme, employing B3LYP and BLYP density functionals as well as DFTB method for the QM part and AMBER force field for the MM part. QM/MM geometries of the protonated Schiff-base 11- cis-retinal with B3LYP and DFTB are very similar to each other. TD-B3LYP/MM excitation energy calculations reproduce the experimental absorption maximum of 500 nm in the presence of native rhodopsin environment and predict spectral shifts due to mutations within 10 nm, whereas TD-BLYP/MM excitation energies have red-shift error of at least 50 nm. In the wild-type rhodopsin, Glu113 shifts the first excitation energy to blue and accounts for most of the shift found. Other amino acids individually contribute to the first excitation energy but their net effect is small. The electronic polarization effect is essential for reproducing experimental bond length alternation along the polyene chain in protonated Schiff-base retinal, which correlates with the computed first excitation energy. It also corrects the excitation energies and spectral shifts in mutants, more effectively for deprotonated Schiff-base retinal than for the protonated form. The protonation state and conformation of mutated residues affect electronic spectrum significantly. The present QM/MM calculations estimate not only the experimental excitation energies but also the source of spectral shifts in mutants.  相似文献   

11.
In bacteriorhodopsin (bR), Arg-82bR has been proven to be a very important residue for functional role of this light-driven proton pump. The arginine residue at this position is a super-conserved residue among archaeal rhodopsins. pharaonis phoborhodopsin (ppR; or called as "pharaonis sensory rhodopsin II") has its absorption maximum at 498 nm and acts as a sensor in the membrane of Natronobacterium pharaonis, mediating the negative phototaxis from the light of wavelength shorter than 520 nm. To investigate the role of the arginine residue (Arg-72ppR) of ppR corresponding to Arg-82bR, mutants whose Arg-72ppR was replaced by alanine (R72A), lysine (R72K), glutamine (R72Q) and serine (R72S) were prepared. These mutants were unstable in low concentrations of NaCl and lost their color gradually when the proteins were solubilized with 0.1% n-dodecyl-beta-D-maltoside. The order of instability was R72S > R72A > R72K > R72Q > the wild type. The rates of denaturation were reduced in a solution of high concentrations of monovalent anions.  相似文献   

12.
The neutral retinal Schiff base is connected to opsin in UV sensing pigments and in the blue-shifted meta-II signaling state of the rhodopsin photocycle. We have designed and synthesized two model systems for this neutral chromophore and have measured their gas-phase absorption spectra in the electrostatic storage ring ELISA with a photofragmentation technique. By comparison to the absorption spectrum of the protonated retinal Schiff base in vacuo, we found that the blue shift caused by deprotonation of the Schiff base is more than 200 nm. The absorption properties of the UV absorbing proteins are thus largely determined by the intrinsic properties of the chromophore. The effect of approaching a positive charge to the Schiff base was also studied, as well as the susceptibility of the protonated and unprotonated chromophores to experience spectral shifts in different solvents.  相似文献   

13.
Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.  相似文献   

14.
Rhodopsins can modulate the optical properties of their chromophores over a wide range of wavelengths. The mechanism for this spectral tuning is based on the response of the retinal chromophore to external stress and the interaction with the charged, polar, and polarizable amino acids of the protein environment and is connected to its large change in dipole moment upon excitation, its large electronic polarizability, and its structural flexibility. In this work, we investigate the accuracy of computational approaches for modeling changes in absorption energies with respect to changes in geometry and applied external electric fields. We illustrate the high sensitivity of absorption energies on the ground-state structure of retinal, which varies significantly with the computational method used for geometry optimization. The response to external fields, in particular to point charges which model the protein environment in combined quantum mechanical/molecular mechanical (QM/MM) applications, is a crucial feature, which is not properly represented by previously used methods, such as time-dependent density functional theory (TDDFT), complete active space self-consistent field (CASSCF), and Hartree-Fock (HF) or semiempirical configuration interaction singles (CIS). This is discussed in detail for bacteriorhodopsin (bR), a protein which blue-shifts retinal gas-phase excitation energy by about 0.5 eV. As a result of this study, we propose a procedure which combines structure optimization or molecular dynamics simulation using DFT methods with a semiempirical or ab initio multireference configuration interaction treatment of the excitation energies. Using a conventional QM/MM point charge representation of the protein environment, we obtain an absorption energy for bR of 2.34 eV. This result is already close to the experimental value of 2.18 eV, even without considering the effects of protein polarization, differential dispersion, and conformational sampling.  相似文献   

15.
Three ring oxidized retinal analogues have been isolated from the exhaustive oxidation of all-trans retinal. All-trans 4-oxoretinal and 2,3-dehydro-4-oxoretinal have similar absorption maxima to that of all-trans retinal and have been shown to be in the 6-s-cis conformation in solution. Pigments formed with bacterioopsin exhibit absorption maxima (520 nm) blue-shifted from that of bacteriorhodopsin (bR), indicating a disturbance of the external point charge by the electronegative carbonyl moiety at the 4 position. The third analogue contains a ring contracted to a cyclopentenyl-alpha,beta-dione. Unlike the majority of retinals, this analogue displays a 6-s-trans conformation in solution and has a red-shifted absorption maximum at 435 nm. The resulting bR analogue pigment (515 nm) is formed five times faster than the other oxoretinal pigments. All three oxoretinal pigments show an irreversible 20 nm blue shift upon exposure to white light. The 4-oxo and 2,3-dehydro-4-oxoretinal pigments, after irradiation, undergo a small reversible blue shift (4-8 nm) on dark adaptation. These two pigments pump protons, although with slowed photocycle kinetics, demonstrating that these structural changes (addition of the carbonyl at the C-4 and insertion of a double bond in the ring) do not block the function of the pigment. Extraction of the C-15 tritiated analogue retinals from illuminated and non-illuminated pigments of all three oxoretinals yield identical results. Therefore, any crosslinking of these oxoretinals to the protein is by linkages which are unstable to the extraction procedures.  相似文献   

16.
Here we improved our hybrid QM/MM methodology (Houjou et al. J Phys Chem B 2001, 105, 867) for evaluating the absorption maxima of photoreceptor proteins. The renewed method was applied to evaluation of the absorption maxima of several retinal proteins and photoactive yellow protein. The calculated absorption maxima were in good agreement with the corresponding experimental data with a computational error of <10 nm. In addition, our calculations reproduced the experimental gas-phase absorption maxima of model chromophores (protonated all-trans retinal Schiff base and deprotonated thiophenyl-p-coumarate) with the same accuracy. It is expected that our methodology allows for definitive interpretation of the spectral tuning mechanism of retinal proteins.  相似文献   

17.
The ability to tune the light‐absorption properties of chlorophylls by their protein environment is the key to the robustness and high efficiency of photosynthetic light‐harvesting proteins. Unfortunately, the intricacy of the natural complexes makes it very difficult to identify and isolate specific protein–pigment interactions that underlie the spectral‐tuning mechanisms. Herein we identify and demonstrate the tuning mechanism of chlorophyll spectra in type II water‐soluble chlorophyll binding proteins from Brassicaceae (WSCPs). By comparing the molecular structures of two natural WSCPs we correlate a shift in the chlorophyll red absorption band with deformation of its tetrapyrrole macrocycle that is induced by changing the position of a nearby tryptophan residue. We show by a set of reciprocal point mutations that this change accounts for up to 2/3 of the observed spectral shift between the two natural variants.  相似文献   

18.
THE FORMATION OF TWO FORMS OF BATHORHODOPSIN AND THEIR OPTICAL PROPERTIES   总被引:3,自引:0,他引:3  
Abstract— Using two kinds of rhodopsin preparations (digitonin extract and rod outer segments suspension), we measured changes in absorption spectra during the conversion of rhodopsin or isorhodopsin to a photosteady state mixture composed of rhodopsin, isorhodopsin and bathorhodopsin by irradiation with blue light (437 nm) at 77 K and during the reversion of bathorhodopsin to a mixture of rhodopsin and isorhodopsin by irradiation with red light (> 650 nm) at 77 K. The reaction kinetics could be expressed with only one exponential in the former case and with two exponentials in the latter case. These data suggest that both rhodopsin and isorhodopsin are composed of a single molecular species, while bathorhodopsin is composed of two molecular species, designated as bathorhodopsin1 and bathorhodopsin2. The absorption spectra of these bathorhodopsin were calculated by two different methods (kinetic method and warming-cooling method). The former was based on the kinetics of the conversion of two forms of bathorhodopsin by irradiation with the red light. The spectra obtained by this method were consistent with those obtained by the warming-cooling method. Bathorhodopsin1 and bathorhodopsin2 have Λmax at 555 and 538 nm, respectively. The two forms of bathorhodopsin are interconvertible in the light, but not in the dark. Thus, we suggest that a rhodopsin molecule in the excited state relaxes to either bathorhodopsin1 or bathorhodopsin2 through one of the two parallel pathways.  相似文献   

19.
Highly fluorescent molecules harnessing the excited state intramolecular proton transfer (ESIPT) process are promising for a new generation of displays and light sources because they can offer very unique and novel optoelectronic properties which are different from those of conventional fluorescent dyes. To realize innovative ESIPT devices comprising full emission colors over the whole visible region, a molecular design strategy for predictable emission color tuning should be established. Here, we have developed a general strategy for a wide-range spectral tuning of imidazole-based ESIPT materials based on three different strategies--introduction of a nodal plane model, extension of effective conjugation length, and modification of heterocyclic rings. A series of nine ESIPT molecules were designed, synthesized and comprehensively investigated for their characteristic emission properties. All these molecules commonly showed no clear and transparent visible range absorption with no absorption color, but showed different colors of intense photoluminescence over broad visible regions from 450 nm (HPI) to 630 nm (HPNO) depending on their molecular structure. With the aid of density functional theory and time-dependent DFT calculations using M06, wB97XD, and B3LYP parameters with the 6-31G(d,p) basis set, these tuned emission bands of nine emitters were assigned from the stabilized excited state conformations that were derived from modified molecular structures.  相似文献   

20.
The optical and IR-spectroscopic properties of the protonated Schiff base of retinal are highly sensitive to the electrostatic environment. This feature makes retinal a useful probe to study structural differences and changes in rhodopsins. It also raises an interest to theoretically predict the spectroscopic response to mutation and structural evolution. Computational models appropriate for this purpose usually combine sophisticated quantum mechanical (QM) methods with molecular mechanics (MM) force fields. In an effort to test and improve the accuracy of these QM/MM models, we consider in this article the effects of polarization and inter-residual charge transfer within the binding pocket of bacteriorhodopsin (bR) and pharaonis sensory rhodopsin II (psRII, also called pharaonis phoborhodopsin, ppR) on the excitation energy using an ab initio QM/QM/MM approach. The results will serve as reference for assessing empirical polarization models in a consecutive article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号