首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

7.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

8.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

9.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
近几年来,对含有弱配位阴离子如OTf^-(三氟甲磺酸根),BF4^-,PF6^-和AsF6^-等有机金属化合物的研究逐渐引起人们的关注,这些弱配位阴离子具有较高的反庆活性,是很好的离去基团,并且可在非常温和的反应条件下被其它配体取代,所以它们是金属有机合成中的一种非常有用的合成子,最近,这种具有弱配位能力的阴离子在不对称催化中的也取得了很好的结果,在不对称催化体系中引入弱配位阴离子可以极大地改善催化体系的活性,我们在研究手性胺、膦配体在不对称环丙烷化反应中的应用时发现三氟甲磺酸根也表现出这种性质,当在手性胺、膦钌配合物催化体系中加入三氟甲磺酸银后,不对称环丙烷化反应的产率有大幅度提高,但是人们对弱配位阴离子在催化反应中的作用机理的研究还不太多,本文利用原位变温^19F NMR技术研究了三氟甲磺酸根在手性胺、膦钌配合物催化的苯乙烯不对称环丙烷化反应中的作用。  相似文献   

12.
The rare earth metal(III) trifluoromethanesulfonate (rare earth metal(III) triflate, RE(OTf)3) was found to be an efficient catalyst for aromatic nitration with carboxylic anhydride-inorganic nitrate as the nitrating agent. In the presence of a catalytic amount of RE(OTf)3, the nitration of substituted benzenes proceeded to afford the corresponding nitrobenzenes. Especially, scandium(III) trifluoromethanesulfonate (scandium(III) triflate, Sc(OTf)3) is the most active catalyst among our tested Lewis acids. It was also found that acetic anhydride-Al(NO3).9H2O is the most active nitrating agent in this system.  相似文献   

13.
Lanthanide trifluoromethanesulfonates, Ln(OTf) 3 (OTf (-) = trifluoromethanesulfonate), serve as effective precatalysts for the rapid, regioselective, intermolecular acylation of activated arenes. This contribution probes mechanism and metal ionic radius effects in the catalytic lanthanide triflate-mediated acylation of anisole with acetic anhydride. Kinetic studies of Ln(OTf) 3 (Ln = La, Eu, Yb, Lu)-mediated anisole acylation with acetic anhydride in nitromethane reveal the rate law nu approximately k 3 [Ln (3+)] (1)[acetic anhydride] (1)[anisole] (1). Eyring and Arrhenius analyses yield Delta H++ = 12.9 (4) kcal.mol (-1), Delta S++ = -44.8 (1.3) e.u., and E a = 13.1 (4) kcal.mol (-1) for Ln = Yb, with the negative Delta S++ implying a highly organized transition state. The observed primary kinetic isotope effect of k H/ k D = 2.6 +/- 0.15 is consistent with arene C-H bond scission in the turnover-limiting step. The proposed catalytic pathway involves precatalyst formation via interaction of Ln(OTf) 3 with acetic anhydride, followed by Ln (3+)-anisole pi-complexation, substrate-electrophile sigma-complex formation, and turnover-limiting C-H bond scission. Lanthanide size effects on turnover frequencies are consistent with a transition state lacking significant ionic radius-dependent steric constraints. Substrate-Ln (3+) interactions using paramagnetic Gd (3+) and Yb (3+) NMR probes and factors affecting reaction rates such as arene substituent and added LiClO 4 cocatalyst are also explored.  相似文献   

14.
Tan R  Song D 《Inorganic chemistry》2011,50(21):10614-10622
The dinuclear Me(2)Pt(II) complexes of 3,4-bis(quinolin-8-yl)thiophene (1a), 3,4-bis(6 trifluoromethoxyquinolin-8-yl)thiophene (1b), and 3,4-bis(2-methylquinolin-8-yl)thiophene (1c) react with MeOTf (OTf = trifluoromethanesulfonate) to afford the corresponding chiral mononuclear five-coordinate Me(3)Pt(IV) complexes [PtMe(3)(1a)]OTf (3a), [PtMe(3)(1b)]OTf (3b), and [PtMe(3)(1c)]OTf (3c), respectively. [PtMe(3)(1c)]BAr(F)(4) (3d) (where BAr(F)(4) = [B{C(6)H(3)-3,5-(CF(3))(2)}(4)]) has also been synthesized for structural study. While 3a appears to be symmetric in solution and asymmetric in solid state, 3c and 3d are asymmetric in both solution and solid state. The chirality originates from interligand repulsion, rather than any unsymmetrical ligand. Variable-temperature NMR and computational studies suggest a ligand-twisting isomerization pathway for the interconversion of the enantiomers, rather than the rotational exchange of three CH(3) ligands on the metal center.  相似文献   

15.
A series of (salen)tin(II) and (salen)tin(IV) complexes was synthesized. The (salen)tin(IV) complexes, (salen)SnX(2) (X = Br and I), were prepared in good yields via the direct oxidation reaction of (salen)tin(II) complexes with Br(2) or I(2). (Salen)SnX(2) successfully underwent the anion-exchange reaction with AgOTf (OTf = trifluoromethanesulfonate) to form (salen)Sn(OTf)(2) and (salen)Sn(X)(OTf) (X = Br). The (salen)Sn(OTf)(2) complex was easily converted to any of the dihalide (salen)SnX(2) compounds using halide salts. All complexes were fully characterized by (1)H NMR spectroscopy, mass spectrometry, and elemental analysis, while some were characterized by (13)C, (19)F, and (119)Sn NMR spectroscopy. Several crystal structures of (salen)tin(II) and (salen)tin(IV) were also determined. Finally, both (salen)tin(II) and (salen)tin(IV) complexes were shown to efficiently catalyze the formation of propylene carbonate from propylene oxide and CO(2). Of the series, (3,3',5,5'-Br(4)-salen)SnBr(2), 3i, was found to be the most effective catalyst (TOF = 524 h(-)(1)).  相似文献   

16.
Bismuth trifluoromethanesulfonate (bismuth triflate) catalyzed the Friedel–Crafts benzoylation of activated aromatic compounds when dissolved in 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTf) ionic liquid. Immobilization of bismuth triflate (5 mol %) in [BMIM]OTf allowed the synthesis of aryl ketones in good to excellent yields with short reaction times under microwave irradiation. This catalytic system was easily recovered and reused several times without any significant loss of the activity.  相似文献   

17.
Trivalent lanthanide-like metal ions coordinate nine water oxygen atoms, which form a tricapped trigonal prism in a large number of crystalline hydrates. Water deficiency, randomly distributed over the capping positions, was found for the smallest metal ions in the isomorphous nonahydrated trifluoromethanesulfonates, [M(H2O)n](CF3SO3)3, in which M = Sc(III), Lu(III), Yb(III), Tm(III) or Er(III). The hydration number n increases (n = 8.0(1), 8.4(1), 8.7(1), 8.8(1) and 8.96(5), respectively) with increasing ionic size. Deuterium (2H) solid-state NMR spectroscopy revealed fast positional exchange between the coordinated capping and prism water molecules; this exchange started at temperatures higher than about 280 K for lutetium(III) and below 268 K for scandium(III). Similar positional exchange for the fully nonahydrated yttrium(III) and lanthanum(III) compounds started at higher temperatures, over about 330 and 360 K, respectively. An exchange mechanism is proposed that can exchange equatorial and capping water molecules within the restrictions of the crystal lattice, even for fully hydrated lanthanoid(III) ions. Phase transitions occurred for all the water-deficient compounds at approximately 185 K. The hydrated scandium(III) trifluoromethanesulfonate transforms reversibly (DeltaH degrees = -0.80(1) kJ mol(-1) on cooling) to a trigonal unit cell that is almost nine times larger, with the scandium ion surrounded by seven fully occupied and two partly occupied oxygen atom positions in a distorted capped trigonal prism. The hydrogen bonding to the trifluoromethanesulfonate anions stabilises the trigonal prism of water ligands, even for the crowded hydration sphere of the smallest metal ions in the series. Implications for the Lewis acid catalytic activity of the hydrated scandium(III) and lanthanoid(III) trifluoromethanesulfonates for organic syntheses performed in aqueous media are discussed.  相似文献   

18.
The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O. The thermal behavior of both compounds was investigated by DTA and XRD. In comparison to ACF, amorphous AlF(3) prepared in a conventional way is not catalytically active for the isomerization reaction of 1,2-dibromohexafluoropropane, which requires a very strong Lewis acid. Both compounds are mainly built up of corner-sharing AlF(6) octahedra forming a random network. The degree of disorder in ACF is higher than in amorphous AlF(3). Terminal fluorine atoms were detected in ACF by (19)F NMR. The chlorine in ACF does not exist as a separate, crystalline AlCl(3) phase. Additionally, chlorine-containing radicals, remaining from the synthesis, are trapped in cavities of ACF. These radicals are stable at room temperature but do not take part in the catalytic reaction.  相似文献   

19.
The reaction of the unsymmetrical ligands 1-diphenylphosphino-1'-(phenylsulfanyl)ferrocene and 1-diphenylphosphino-1'-(phenylselenyl)ferrocene, Fc(EPh)PPh2(E = S, Se), with several group 11 metal derivatives leads to the synthesis of complexes of the type [MX{Fc(EPh)PPh2}](M = Au, X = Cl, C6F5; M = Ag, X = OTf), (OTf = trifluoromethanesulfonate), [M{Fc(EPh)PPh2}2]X (M = Au, X = ClO4; M = Ag, X = OTf), [M(PPh3){Fc(EPh)PPh2}]OTf (M = Au, Ag), [Au2{Fc(SPh)PPh2}2](ClO4)2, [Au(C6F5)2{Fc(SePh)PPh2}]ClO4, [Au(C6F5)3{Fc(EPh)PPh2}], [Au2(C6F5)6{Fc(SePh)PPh2}] or [Cu{Fc(EPh)PPh2}2]PF6(E = S, Se). In these complexes coordination depends upon the metal centre; with gold it takes place predominantly to the phosphorus atom and with silver and copper to both phosphorus and chalcogen atoms. The treatment of some of the gold complexes with other metal centres affords heterometallic derivatives that in some cases are in equilibrium with the homometallic derivatives. Several compounds have been characterized by X-ray diffraction, four pairs of homologous compounds, yet not a single pair is isotypic. In many of them a three dimensional network is formed through secondary bonds such as hydrogen bonds, Au...Cl or Au...Se interactions. The complex [Ag(OTf){Fc(SePh)PPh2}] forms one-dimensional chains through trifluoromethanesulfonate bridging ligands.  相似文献   

20.
31P nuclear magnetic resonance (NMR) spectroscopic measurement with trimethylphosphine oxide (TMPO) was applied to evaluate the Lewis acid catalysis of various metal triflates in water. The original 31P NMR chemical shift and line width of TMPO is changed by the direct interaction of TMPO molecules with the Lewis acid sites of metal triflates. [Sc(OTf)3] and [In(OTf)3] had larger changes in 31P chemical shift and line width by formation of the Lewis acid–TMPO complex than other metal triflates. It originates from the strong interaction between the Lewis acid and TMPO, which results in higher stability of [Sc(OTf)3TMPO] and [In(OTf)3TMPO] complexes than other metal triflate–TMPO complexes. The catalytic activities of [Sc(OTf)3] and [In(OTf)3] for Lewis acid‐catalyzed reactions with carbonyl compounds in water were far superior to the other metal triflates, which indicates that the high stability of metal triflate–carbonyl compound complexes cause high catalytic performance for these reactions. Density functional theory (DFT) calculation suggests that low LUMO levels of [Sc(OTf)3] and [In(OTf)3] would be responsible for the formation of stable coordination intermediate with nucleophilic reactant in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号