首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl bis(2',5'-di-O-methylurid-3'-yl) phosphate (1), a sugar O-alkylated trinucleoside 3',3',5'-monophosphate, have been followed by RP HPLC over a wide pH range. Under neutral and mildly acidic conditions, the only reaction observed was a pH-independent cleavage of the O-C5' bond of the 5'-linked nucleoside. Under more alkaline conditions nucleophilic attack by hydroxide ion starts to compete. The reaction is first order in [OH(-)] and becomes predominant at pH 10. Each of the 3'-linked nucleosides is displaced 2.9 times as readily as the 5'-linked one. To determine the beta(lg) value for the hydroxide ion catalyzed hydrolysis of 1, two diesters (2a,b) having 2',3'-O-methyleneadenosine (7) and 2',5'-di-O-methyluridine (4) as leaving groups were hydrolyzed under alkaline conditions. Since the beta(lg) value for this reaction is known, DeltapK(a) between 4 and 7 could be calculated. The beta(lg) for the hydrolysis of 1 was estimated to be -0.5 with use of this information. The mechanisms of the partial reactions and the role of leaving group properties in ribozyme reactions of large ribozymes are discussed.  相似文献   

2.
The reactions of a 5'-cap model compound P1-(7-methylguanosine) P3-guanosine 5',5'-triphosphate, m7GpppG, were studied in the presence of three different macrocyclic amines (2-4) under neutral conditions. The only products observed in the absence of the macrocycles resulted from the base-catalysed imidazole ring-opening and the acid-catalysed cleavage of the N7-methylguanosine base, whereas in the presence of these catalysts hydrolysis of the triphosphate bridge predominated. The latter reaction yielded guanosine 5'-monophosphate, guanosine 5'-diphosphate, 7-methylguanosine 5'-monophosphate and 7-methylguanosine 5'-diphosphate as the initial products, indicating that both of the phosphoric anhydride bonds were cleaved. The overall catalytic activity of all three macrocycles was comparable. The hydrolysis to guanosine 5'-diphosphate and 7-methylguanosine 5'-monophosphate was slightly more favoured than the cleavage to yield guanosine 5'-monophosphate and 7-methylguanosine diphosphate. All the macrocycles also enhanced the subsequent hydrolysis of the nucleoside diphosphates, 2 being more efficient than 3 and 4.  相似文献   

3.
The exchange for deuterium of the C-6 protons of uridine 5'-monophosphate (UMP) and 5-fluorouridine 5'-monophosphate (F-UMP) catalyzed by yeast orotidine 5'-monophosphate decarboxylase (ScOMPDC) at pD 6.5-9.3 and 25 °C was monitored by (1)H NMR spectroscopy. Deuterium exchange proceeds by proton transfer from C-6 of the bound nucleotide to the deprotonated side chain of Lys-93 to give the enzyme-bound vinyl carbanion. The pD-rate profiles for k(cat) give turnover numbers for deuterium exchange into enzyme-bound UMP and F-UMP of 1.2 × 10(-5) and 0.041 s(-1), respectively, so that the 5-fluoro substituent results in a 3400-fold increase in the first-order rate constant for deuterium exchange. The binding of UMP and F-UMP to ScOMPDC results in 0.5 and 1.4 unit decreases, respectively, in the pK(a) of the side chain of the catalytic base Lys-93, showing that these nucleotides bind preferentially to the deprotonated enzyme. We also report the first carbon acid pK(a) values for proton transfer from C-6 of uridine (pK(CH) = 28.8) and 5-fluorouridine (pK(CH) = 25.1) in aqueous solution. The stabilizing effects of the 5-fluoro substituent on C-6 carbanion formation in solution (5 kcal/mol) and at ScOMPDC (6 kcal/mol) are similar. The binding of UMP and F-UMP to ScOMPDC results in a greater than 5 × 10(9)-fold increase in the equilibrium constant for proton transfer from C-6, so that ScOMPDC stabilizes the bound vinyl carbanions, relative to the bound nucleotides, by at least 13 kcal/mol. The pD-rate profile for k(cat)/K(m) for deuterium exchange into F-UMP gives the intrinsic second-order rate constant for exchange catalyzed by the deprotonated enzyme as 2300 M(-1) s(-1). This was used to calculate a total rate acceleration for ScOMPDC-catalyzed deuterium exchange of 3 × 10(10) M(-1), which corresponds to a transition-state stabilization for deuterium exchange of 14 kcal/mol. We conclude that a large portion of the total transition-state stabilization for the decarboxylation of orotidine 5'-monophosphate can be accounted for by stabilization of the enzyme-bound vinyl carbanion intermediate of the stepwise reaction.  相似文献   

4.
Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).  相似文献   

5.
Lin SY  Chen WH  Liu CY 《Electrophoresis》2002,23(9):1230-1238
An open-tubular wall-coated macrocyclic polyamine capillary column (70 cm x 75 microm ID) with 50 cm effective length for the separation of nucleoside monophosphates is described. Some parameters with respect to concentration, pH, composition of the buffer, and voltage in order to optimize the separation were studied. The coated capillary showed reversed electroosmotic flow (EOF), allowing anions to be separated in the co-EOF mode. Baseline separations were achieved for the eight nucleotides in less than 26 min using a background electrolyte consisting of H(3)PO(4)-NaH(2)PO(4) (30 mM, pH 3.10), an applied voltage of -15 kV, and detection at 254 nm. The macrocyclic polyamine on the capillary wall introduced anion coordination for the interaction with the analytes, the strength of which could be moderated by the type and concentration of the competing ion used in the background electrolyte (BGE). With a low concentration of the competing ion (phosphate ion), the migration behavior followed that obtained in the electrophoretic system. Increasing the concentration of the competing ion resulted in a faster migration and more complete elution of the analyte. The method established was also employed for the analysis of nucleotides in mushrooms. Aqueous extracts of mushrooms from different species and various extraction methods were injected directly for the analysis. Uridine 5'-monophosphate, guanosine 5'-monophosphate, adenosine 5'-monophosphate, and cytidine 5'-monophosphate, were found in the sample tested.  相似文献   

6.
A synthesis of 9-(2,3-dideoxy-2-fluoro-beta-D-threo-pentofuranosyl)adenine (1, FddA) via a 6-chloro-9-(3-deoxy-beta-D-erythro-pentofuranosyl)-9H-purine (9), which was readily obtained from inosine (5), is described. Fluorination at the C2'-beta position of the purine 3'-deoxynucleoside with diethylaminosulfur trifluoride was improved by the introduction of a 6-chloro group and proceeded in moderate yield. Purine 3'-deoxynucleoside derivatives were also subjected to nucleophilic reactions with triethylamine trihydrofluoride and gave the desired fluorinated nucleoside in good yield. The safety and yield of the fluorination process were greatly improved by the use of triethylamine trihydrofluoride. The influence of the sugar ring conformation and 6-chloro group on the rate of the nucleophilic reaction against elimination are also discussed.  相似文献   

7.
Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na(2)[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm(-3) KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.  相似文献   

8.
The first acidity constant of fully protonated xanthosine 5'-monophosphate, that is, of H3(XMP)+, was estimated by means of a micro acidity constant scheme and the following three deprotonations of the H2(XMP)+/- (pKa=0.97), H(XMP)- (5.30), and XMP2- (6.45) species were determined by potentiometric pH titrations; further deprotonation of (XMP-H)3- is possible only with pKa>12. The most important results are that the xanthine residue is deprotonated before the P(O)2(OH)- group loses its final proton; that is, twofold negatively charged XMP carries one negative charge in the pyrimidine ring and one at the phosphate group. Micro acidity constant evaluations reveal that this latter mentioned species occurs with a formation degree of 88 %, whereas its tautomer with a neutral xanthine moiety and a PO3(2-) group is formed only to 12 %; this distinguishes XMP from its related nucleoside 5'-monophosphates, like guanosine 5'-monophosphate. At the physiological pH of about 7.5 mainly (XMP-H)3- exists. The question, which of the purine sites, (N1)H or (N3)H, is deprotonated in this species cannot be answered unequivocally, though it appears that the (N3)H site is more acidic. By application of several methylated xanthine species intrinsic micro acidity constants are calculated and it is shown that, for example, for 7-methylxanthine the N1-deprotonated tautomer occurs with a formation degree of about 5 %; a small but significant amount that, as is discussed, may possibly be enhanced by metal ion coordination to N7, which is known to occur preferably to this site.  相似文献   

9.
A selective and highly sensitive liquid chromatographic method for the determination of ganciclovir (anti-virus drug) in human serum was described. After ganciclovir and acyclovir (internal standard; IS) were extracted with solid-phase extraction cartridge from serum, they were converted into fluorescent derivatives by reaction with phenylglyoxal in a phosphate buffer (pH 5.8) at 20 degrees C for 30 min. The derivatives were separated by reversed-phase column with a mixture of acetonitrile-1 mM phosphate buffer (pH 6.2) (18:82, v/v), and were then detected spectrofluorometrically at 512 nm with excitation at 365 nm. Extraction recoveries were 87.0-91.6% for ganciclovir and 86.8-92.3% for IS. The detection limit for ganciclovir spiked to serum was 5 ng ml-1 serum (306 fmol on column) at a signal-to-noise ratio of three. The accuracy and precision of this method were 7.6% and 5.0% even at low concentration (20 ng ml-1). The within- and between-day variations are lower than 7.6% and 8.1%, respectively.  相似文献   

10.
Stereospecific Synthesis of the Anticancer Agent 5′-Deoxy-5-fluorouridine and its 5′-deuteriated Derivatives 5′-Deoxy-5-fluorouridine (5′-DFUR) has been obtained in high yield and purity by Stereospecific condensation of the anomeric 5¨deoxy-1,2,3-tri- O-acetyl-D-ribofu-ranose with bis(trimethylsilylated)-5-fluorouracil in the presence of trimethylsilyl trifluoromethanesulfonate, and by subsequent cleavage of the acetate protecting groups. A minor by-product of the synthesis, the α-anomeric nucleoside is produced by a (β-α)-epimerization, a procedure which is catalyzed by trimethylsilyl trifluoromethanesulfonate. The corresponding 5′-deuteriated, and 5′,5′-dideuteriated nucleosides have also been synthesized using an analogous way. The synthesis of the sugar components of the latter nucleosides - starting from D-ribose, D-xylose and D-glucose -is also described.  相似文献   

11.
Summary The reaction of Fe(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) is studied in detail and procedures for the sensitive determination of Fe(II) at pH 4.7 (acetate buffer), pH 9.0 (borate buffer) and in the presence of EDTA are optimized. A simultaneous determination of Fe, Cu, Zn, Co and Ni in aqueous medium and of Fe, Cu and Zn in blood serum with Br-PADAP at pH 9.0 using multivariate calibration with PLS evaluation of absorbance data also give satisfactory results.  相似文献   

12.
Fluorescent ligands have been designed to form ternary complexes with a Cu(II) cation and phosphates in a buffer solution at physiological pH 7.4. It has been shown that a combination of two different ligands and CuCl(2) allows one to achieve high adenosine triphosphate/adenosine diphosphate, adenosine 5'-monophosphate selectivity, and ratiometric fluorescence sensing, while separately each ligand complex does not have such properties.  相似文献   

13.
The constants (K(s)) and enthalpies (DeltaH(s)) for stacking interactions between purine nucleoside monophosphates were determined by calorimetry; the values thus obtained were guanosine as follows: K(s) = 2.1 +/- 0.3 M(-)(1) and DeltaH(s) = -41.8 +/- 0.8 kJ/mol for adenosine 5'-monophosphate (5'AMP); K(s) = 1.5 +/- 0.3 M(-1) and DeltaH(s) = -42.0 +/- 1.5 kJ/mol for guanosine 5'-monophosphate (5'GMP); and K(s) = 1.0 +/- 0.2 M(-1) and DeltaH(s) = -42.3 +/- 1.1 kJ/mol for inosine 5'-monophosphate (5'IMP). The interaction of nickel(II) with purine nucleoside monophosphates was studied using potentiometric and calorimetric methods, with 0.1 M tetramethylammonium bromide as the background electrolyte, at 25 degrees C. The presence in solution of the complexes [Ni(5'GMP)(2)](2)(-) and [Ni(5'IMP)(2)](2)(-) was observed. The thermodynamic parameters obtained were log K(ML) = 3.04 +/- 0.02, log K(ML2) = 2.33 +/- 0.02, DeltaH(ML) = -18.4 +/- 0.9 kJ/mol and DeltaH(ML2) = -9.0 +/- 1.9 kJ/mol for 5'GMP; and log K(ML) = 2.91 +/- 0.01, log K(ML2) = 1.92 +/- 0.01, DeltaH(ML) = -16.2 +/- 0.9 kJ/mol and DeltaH(ML2) = -0.1 +/- 2.3 kJ/mol for 5'IMP. The relationships between complex enthalpies and the degree of macrochelation, as well as the stacking interaction between purine bases in the complexes are discussed in relation to previously reported calorimetric data.  相似文献   

14.
Esaka Y  Inagaki S  Goto M  Sako M 《Electrophoresis》2001,22(1):104-108
We investigated the separation of five deoxyribonucleoside monophosphates: 2'-deoxyguanosine-5'-monophosphate (dGMP), 2'-deoxyadenosine-5'-monophosphate (dAMP), 2'-deoxycytosine-5'-monophosphate (dCMP), 2'-deoxythymidine-5'-monophosphate (dTMP) and a dGMP adduct possessing N2-ethyl-guanine, which has been noted in relation to mutagenesis of alcohol, using capillary zone electrophoresis (CZE). The concentration of polyethylene glycol (PEG) as a modifier and the pH of the running solutions can efficiently control the observed separation. Interaction of PEG with analytes was quantitatively evaluated. PEG worked effectively as a hydrophobic selector in these separations. The values of pKa of the acidic-NH-groups in the base moieties of dGMP, dTMP, and the dGMP adduct are close to that of boric acid used as buffer of the running solutions. The control of their charge was facilitated, enabling improved separations. A more sufficient and fast separation was achieved by both optimization of pH of the running solutions and PEG concentration compared with that obtained by pH control alone. On-line concentration using a stacking method followed by the PEG-assisted CZE was briefly studied.  相似文献   

15.
New caged derivatives of hydrolysis-resistant 8-bromoadenosine cyclic 3',5'-monophosphate (8-Br-cAMP) and 8-bromoguanosine cyclic 3',5'-monophosphate (8-Br-cGMP) are described. The compounds are the axial and equatorial isomers of the (7-methoxycoumarin-4-yl)methyl (MCM) esters of cyclic nucleotides. Synthesis is accomplished by treatment of 4-bromomethyl-7-methoxycoumarin with the tetra-n-butylammonium salts of the 8-bromo-substituted cyclic nucleotides or with the free acids of 8-Br-cAMP and 8-Br-cGMP in the presence of silver(I) oxide. MCM-caged 8-Br-cAMP and MCM-caged 8-Br-cGMP liberate 8-Br-cAMP and 8-Br-cGMP during irradiation with ultraviolet light within a few nanoseconds. They show favorable absorption properties and quantum yields and are resistant to hydrolysis in aqueous buffer solutions. The moderate fluorescence properties of the caged compounds in comparison with the strongly fluorescent 4-hydroxymethyl-7-methoxycoumarin (MCM-OH) photoproduct allow the indirect estimation of the amount of photolytically released cyclic nucleotides in aqueous buffer solutions using fluorescence measurements. Their usefulness for physiological studies has been examined in a mammalian cell line expressing the cyclic nucleotide-gated ion channel of bovine olfactory sensory neurons using the patch-clamp technique and confocal laser scanning microscopy. The caged compounds serve as efficient and rapid intracellular sources of 8-Br-cAMP and 8-Br-cGMP. However, at least in HEK 293 cells, fluorescence signals cannot be used to monitor the photolysis of MCM-caged 8-Br-cAMP and 8-Br-cGMP, due to quenching of the fluorescence of MCM-OH.  相似文献   

16.
Yeh CF  Jiang SJ 《The Analyst》2002,127(10):1324-1327
A preliminary study of a modified microconcentric nebulizer (CEI-100, CETAC) as the sample introduction device of capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) for the determination of monophosphate nucleotides is described. The monophosphate nucleotides studied include adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP), uridine 5'-monophosphate (UMP) and inosine 5'-monophosphate (IMP). The species studied were well separated using a 70 cm length x 75 microm id fused silica capillary while the applied voltage was set at -22 kV and a 20 mmol l(-1) ammonium citrate/citric acid buffer (pH 4.0) containing 0.1% m/v cationic polymer (hexadimethrine bromide, Polybrene) was used as the electrophoretic buffer. The electroosmotic flow was reversed by flushing the fused silica capillary with 0.2% m/v Polybrene to accelerate separation. The detection limit of various species studied was in the range of 0.036-0.054 microg P ml(-1), which corresponded to the absolute detection limit of 1.1-1.6 pg P based on the injection volume of 30 nl. We determined the concentrations of nucleotides in two IG-enriched monosodium glutamates purchased from the local market. The recovery was in the range of 100-112% for various species, and the concentrations of IMP and GMP in these samples were in the range of 0.15-0.18% m/m.  相似文献   

17.
With the aim of diminishing the toxicity of 5-fluorouridine (1) and obtaining biologically active derivatives of 1, various kinds of 5'-O-acyl-5-fluorouridines 2 were synthesized. The antitumor activity of the compounds against L-1210 leukemia in mice was examined. The 5'-O-heptanoyl derivative 2h showed the highest antitumor activity.  相似文献   

18.
Synthetic routes to 4'-(2,2-difluorospirocyclopropane) analogues of adenosine, cytidine, and uridine are described. Treatment of 2',3'-O-isopropylidene-4',5'-unsaturated compounds derived from adenosine and uridine with difluorocarbene (generated from PhHgCF3 and NaI) gave diastereomeric mixtures of the 2,2-difluorospirocyclopropane adducts. Stereoselectivity resulting from hindrance by the isopropylidene group favored addition at the beta face. Removal of base and sugar protecting groups gave new difluorospirocyclopropane nucleoside analogues. The protected uridine analogue was converted into its cytidine counterpart via a 4-(1,2,4-triazol-1-yl) intermediate. Stannyl radical-mediated deoxygenation of the 3'-O-TBS-2'-thionocarbamate derivatives gave the 2'-deoxy products of direct hydrogen transfer. In contrast, identical treatment of the 2'-O-TBS-3'-thionocarbamate isomers resulted in opening of the vicinal difluorocyclopropane ring upon generation of a C3' radical followed by homoallylic hydrogen transfer to give 4'-(1,1-difluoroethyl)-3',4'-unsaturated nucleoside derivatives. Structural aspects and biological effect considerations are discussed.  相似文献   

19.
We present a new rapid CE method to measure adenine nucleotides adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP) in cells. The short-end injection mode allows a decrease in the analysis time by injecting samples at the outlet end of a silica capillary closest to the detection window, reducing the migration distance. Moreover, the use of methylcellulose (MC) as run buffer additive to suppress EOF permits to further reduce the migration times of analytes. Thus, when a capillary with an effective length of 10.2 cm was used with a 60 mmol/L sodium acetate buffer pH 3.80 in the presence of 0.01% of MC, the migration time of analytes were 1.35 min for ATP, 1.85 min for ADP, and 4.64 min for AMP. These conditions gave a good reproducibility for intra- and interassay (CV <4 and 8%, respectively) and all the procedure demonstrated an excellent analytical recovery (from 98.3 to 99 %). The method suitability was proved both on red blood cells and in spermatozoa. We compared our proposed method to a spectrophotometric assay, by measuring ATP levels in 40 spermatozoa samples. The obtained data were analyzed by the Passing and Bablok regression and Bland-Altman test.  相似文献   

20.
Ten novel 5-substituted derivatives of 3-(l-hydroxyethylidene)pyrrolidine-2,4-dione were synthesized.The compounds were confirmed by IR,:H NMR,MS and elemental analysis.The bioassay indicated that these compounds showed noticeable herbicidal activities,and compounds 6f and 6j exhibited excellent inhibitory activities against the stalk of Echinochloa crusgalli,with EC50 values of 94.4 and 72.7 mg/L,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号