首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molybdenum‐catalyzed asymmetric ring‐closing metathesis of the various Cs‐symmetric (π‐arene)chromium substrates provides the corresponding bridged planar‐chiral (π‐arene)chromium complexes in excellent yields with up to >99 % ee. With a bulky and unsymmetrical substituent, such as N‐indolyl or 1‐naphthyl, at the 2‐positions of the η6‐1,3‐diisopropenylbenzene ligands, both biaryl‐based axial chirality and π‐arene‐based planar chirality are simultaneously induced in the products. The axial chirality is retained even after the removal of the dicarbonylchromium fragment, and the chiral biaryl/heterobiaryl compounds are obtained with complete retention of the enantiopurity.  相似文献   

2.
Optically active X-shaped molecules based on the planar chiral [2.2]paracyclophane building block were prepared, in which di(methoxy)terphenyl units were stacked on the central benzene rings. At 25 °C, anisolyl rings freely rotate in solution, while in the crystal form, they are fixed by intramolecular CH–π interactions, thereby leading to the expression of the axial chirality, i.e., propeller chirality was exhibited by the planar chiral [2.2]paracyclophane moiety. The X-shaped molecule exhibited good circularly polarized luminescence (CPL) profiles with moderate ΦPL and a large glum value in the order of 10−3 at 25 °C, in solution. In contrast, at −120 °C, dual CPL emission with opposite signs was observed. According to the theoretical studies, the rotary motion of the anisolyl units is suppressed in the excited states, and so emission from two isomers could be observed. These results demonstrate that the axial chirality was controlled by the planar chirality, leading ultimately to propeller chirality.  相似文献   

3.
A peptide model is a physical system containing a CONH group, the simplest being HCONHCH3, N‐methylformamide (NMF). We have discovered that NMF and N‐methylacetamide (NMA), which form hydrogen‐bonded oligomers in thin films on a planar AgX fiber, display infrared (IR) spectra with peaks like those of polypeptide helices. Structures can be assigned by their amide I maxima near 1672 (310), 1655 (310), 1653 (α), 1655 (π), and 1635 cm?1 (π), which are the first IR data for the π‐helix. Sharp peaks are an outcome of immobilization of polar species on the polar surface of silver halides. We report the first use of expanded thin‐film IR spectroscopy, in which plots of every spectrum over the amide I–II range show pauses or slow stages in the increase or decrease of absorption. These are identified as static phases followed by dynamic phases, with the incremental gain or loss of a helix turn. A general theory can be stated for such processes. Density functional calculations show that the NMA α‐helix pentamer (crystal structure geometry) is transformed into a π‐helix‐like form. For the first time, an entire sequence (310‐helix, α‐helix, π‐helix, quasiplanar species) of spectra has been recorded for NMA.  相似文献   

4.
It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1′‐binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me2N and a Mes2B group (Mes=mesityl) are introduced at the 2,2′‐positions of the 1,1′‐binaphthyl skeleton ( BN‐BNaph ) owing to the strong π–π interaction between the Me2N‐bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through 1H NMR spectroscopy, X‐ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN‐Ph‐BNaph , in which the Mes2B group is separated from 1,1′‐binaphthyl by a para‐phenylene spacer, confirmed the essential role of π–π interaction for the successful chirality relay in BN‐BNaph .  相似文献   

5.
Reaction of [IrCp*Cl2]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p‐MeOC6H4) results in ferrocene C?H activation and the diastereoselective synthesis of half‐sandwich iridacycles of relative configuration Sp*,RIr*. Extension to (S)‐2‐ferrocenyl‐4‐(1‐methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal‐based pseudo‐tetrahedral chirality, to give both neutral and cationic half‐sandwich iridacycles of absolute configuration Sc,Sp,RIr. Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal‐centred chirality through an iron–iridium interaction in the coordinatively unsaturated cationic intermediate.  相似文献   

6.
The planar 3,4‐diphosphinidenecyclobutene (DPCB) can be remarkably twisted into a C2‐type helical structure by dual coordination of a AuCl moiety. A prompt chirality control of the twisted DPCB skeleton ligated by the digold units affords the enantiopure structure by exchanging the chloride ligands for chiral [1,1′‐binaphthalene]‐2,2′‐dicarboxylate. The chirality of the diaurated 2,2′‐bis(diphenylphosphanyl)‐1,1′‐biphenyl (BIPHEP) system can be controlled prior to that of DPCB. Mixing of a DPCB‐bis(chlorogold) complex with the chiral silver salt dynamically leads to a single diastereomer, which was characterized by the 31P NMR spectrum and the CD couplet patterns in the visible (DPCB) area. The absolute configuration of the singly induced helical structure was assigned by the theoretical CD spectra determined by TD‐DFT calculations. Intramolecular alkoxycyclization of hexa‐4,5‐dien‐1‐ol catalyzed by the asymmetric DPCB‐digold structure were also attempted.  相似文献   

7.
A novel doublet chirality transfer (DCT) model was demonstrated in cis poly(3,5‐disubstituted phenylacetylene)s, i.e., S‐I , R‐I , and S‐I‐NMe . The chiral message from the stereocenter of alkylamide substituent at 3‐position induced the polyene backbone to take cis‐transoid helical conformation with a predominant screw sense. And in turn the helical backbone acted as a scaffold to orient the pyrene probes, which was linked to phenyl rings through 5‐position, to array in an asymmetric manner. A combinatory analyses of 1H NMR, Raman, FTIR, UV‐vis absorption, CD, and computer simulation suggested that the main‐chain stereostructure, solvent nature, and intramolecular hydrogen bonds played important and complex roles on DCT. High cis‐structure content and intramolecular hydrogen bonds were beneficial for the realization of DCT. Reversible helix‐helix transition was observed in S‐I by changing the nature of solvents. In DMF, S‐I adopted a relatively contracted helix, where the main chain exhibited strong optical activity, but that of pyrene was weak. In contrast, a relatively stretched helix formed in CHCl3, in which the optical activity of pyrene was much larger, whereas that of the polyene backbone was the weakest. This helix‐helix transition was attributed to the intramolecular hydrogen bonds, which was confirmed by solution‐state FTIR spectra and computer calculations.  相似文献   

8.
The simplest (minimal) peptide model is HCONHCH3. An increase in the π‐helix content with increased substitution in the acyl portion suggested the examination of N‐methyl‐trimethylacetamide) (NMT). NMT displays spectra, in which there is evolution of a set of helices defined by their amide I maxima near 1686 (310), 1655 (first π), and, most importantly, at 1637 cm?1 (π). Expanded thin‐film infrared spectroscopy (XTFIS) shows pauses or slow stages, which are identified as static phases followed by dynamic phases with the incremental gain or loss of a helix turn. In addition, absorbance at 1637 cm?1 suddenly increases at 82.1 s (30 % over 0.3 s), indicating a phase change and crystallization of the π‐helix, along with a coincidental decrease in the absorbance for the first π‐helix. A sharp peak occurs at the maximum of the phase change at 82.5 s, representing a pure NMT π‐helix. The spectra then undergo a decreasing general absorption loss over 150 s, with the π‐helix evolving further to an antiparallel β‐sheet fragment. The spectral quality arises from the immobilization of polar molecules on polar surfaces. The crystal structure is that of an antiparallel β‐sheet.  相似文献   

9.
Suitably substituted enantioenriched 4‐aryl‐1,4‐dihydro‐pyridines prepared by an organocatalytic enantioselective Michael addition were oxidized with MnO2 into axially chiral 4‐arylpyridines with central‐to‐axial chirality conversion. Moderate to complete percentages (cp) were observed, and a model for the conversion of chirality is discussed.  相似文献   

10.
Facial selectivity during the π‐coordination of pseudo‐tetrahedral iridacycles by neutral (Cr(CO)3), monocationic (Cp*Ru+), and biscationic (Cp*Ir2+) metal centers was directly influenced by the coulombic imbalance in the coordination sphere of the chelated Ir center. We also showed by using theoretical calculations that the feasibility of the related metallacycles that displayed metallocenic planar chirality was dependent to the presence of an electron‐donating group, such as NMe2, which contributed to the overall stability of the complexes. When the π‐bonded moiety was the strongly electron‐withdrawing Cp*Ir2+ group, the electron donation from NMe2 resulted in major conformational changes, with a barrier to rotation of about 17 kcal mol?1 for this group that became spectroscopically diastereotopic (high‐field 1H NMR spectroscopy). This peculiar property is proposed as a means to introduce a new type of constitutional chirality at the nitrogen center: planar chirality at tertiary aromatic amines.  相似文献   

11.
Molecular salts, often observed as cocrystals, play an important role in the fields of pharmaceutics and materials science, where salt formation is used to tune the properties of active pharmaceutical ingredients (APIs) and improve the stability of solid‐state materials. Salt formation via a proton‐transfer reaction typically alters hydrogen‐bonding motifs and influences supramolecular assembly patterns. We report here the molecular salts formed by the pyridyl bis‐urea macrocycle 3,5,13,15,21,22‐hexaazatricyclo[15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐4,14‐dione, ( 1 ), and naphthalene‐1,5‐disulfonic acid (H2NDS) as two salt cocrystal solvates, namely 4,14‐dioxo‐3,5,13,15,21,22‐hexaazatricyclo[15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐21,22‐diium naphthalene‐1,5‐disulfonate dimethyl sulfoxide disolvate, C16H20N6O22+·C10H6O6S22−·2C2H6OS, ( 2 ), and the corresponding monosolvate, C16H20N6O22+·C10H6O6S22−·C2H6OS, ( 3 ). This follows the ΔpKa rule such that there is a proton transfer from H2NDS to ( 1 ), forming the reported molecular salts through hydrogen bonding. Prior to salt formation, ( 1 ) is relatively planar and assembles into columnar structures. The salt cocrystal solvates were obtained upon slow cooling of dimethyl sulfoxide–acetonitrile solutions of the molecular components from two temperatures (363 and 393 K). The proton transfer to ( 1 ) significantly alters the conformation of the macrocycle, changing the formerly planar macrocycle into a step‐shaped conformation with transcis urea groups in ( 2 ) or into a bowl‐shape conformation with transtrans urea groups in ( 3 ).  相似文献   

12.
Square‐planar complexes with achiral and chiral ligands have been enumerated exhaustively under the point‐group D 4h and under the symmetry group S [4] of degree 4, where they have been classified in terms of their symmetries and permutabilities. Thereby, their stereochemical properties and relationships have been discussed in detail. In particular, equivalency under point‐group symmetry (e.g., enantiomeric relationships for chiral complexes and prochirality for achiral complexes) and that under permutation‐group symmetry (e.g., proper and improper permutations, stereogenic and astereogenic groups, and enantiostereogenic and diastereogenic groups) have been characterized to give a systematic format for stereochemistry and stereoisomerism.  相似文献   

13.
The reaction of enantiomerically pure planar chiral ferrocene phosphine thioether with bis(acetonitrile)dichloridopalladium yields the title square‐planar mononuclear palladium complex as an enantiomerically pure single diastereoisomer, [PdFe(C5H5)(C20H20PS)Cl2]. The planar chirality of the ligand is retained in the complex and fully controls the central chirality on the S atom. The absolute configuration, viz. S for the planar chirality and R for the S atom, is unequivocally determined by refinement of the Flack parameter.  相似文献   

14.
The novel title fur­azan‐containing macrocycle (systematic name: 6,9,14,17‐tetraoxa‐2,3,5,7,16,18‐hexa­aza­tri­cyclo­[13.3.0.04,8]­octadeca‐4,7,15,18‐tetraene), C8H10N6O4, (I), is the first macrocycle where the fur­azan rings are connected via a hydrazine group. In spite of the strain in the 12‐membered macrocycle of (I), the geometry of the fur­azan fragment is the same in (I) and in its acyclic analogue 1,8‐bis(5‐amino­fur­azan‐4‐yl­oxy)‐3,6‐dioxaoctane, C10H16N6O6, (II). In both compounds, the participation of the fur­azan rings in intermolecular hydrogen bonding equalizes the N—O bonds within the fur­azan rings, in contrast with rings which do not participate in such interactions.  相似文献   

15.
Nonplanar conformations of pyrazine‐fused ZnII diporphyrins could be controlled by the choice of the meso‐aryl substituents and an axial ligand on the central metals. ZnII diporphyrins bearing sterically demanding meso‐aryl groups with ortho‐substituents led to a twisted chiral D2 conformation, while an achiral C2h form was preferred in the case of aryl groups without ortho‐substituents. Helical chirality induction on ZnII diporphyrins in the twisted conformation was achieved by controlling their handedness of the molecular twist through coordination of optically active 1‐phenethylamine.  相似文献   

16.
Two enantiopure palladium(II) complexes, viz. [1,1′‐(butane‐1,3‐diyl)‐3,3′,4,4′‐tetramethyl‐5,5′‐diphenyl‐2,2′‐biphosphole]dichloridopalladium(II) dichloromethane solvate [systematic name: dichlorido(1,2,5,10,11‐pentamethyl‐3,9‐diphenylperhydrodicyclopenta[a,c][1,4]diphosphepine‐κ2P,P′)palladium(II) dichloromethane solvate], [PdCl2(C28H30P2)]·CH2Cl2, have been synthesized from stereodynamic diphosphines derived from 2,2′‐biphosphole through a metal kinetic dynamic resolution. In both structures, the coordination around the metal atom is square planar, with a cis arrangement of the ligands that drastically reduces the dihedral angle between the two phosphole rings compared with the free ligand. The structural determination of both enantiomers unambiguously establishes the absolute configuration of both central and axial elements of chirality of the 2,2′‐biphosphole framework and indicates that the original carbon chirality of the backbone controls the chiralities of the 2,2′‐biphosphole framework.  相似文献   

17.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

18.
The title compound, C10H18NO3S2, which finds application as a spin label, has triclinic (P) symmetry at 100 (2) K with two independent molecules in the asymmetric unit. Both molecules are very similar with respect to bond lengths and angles, but molecule 2 shows disordering of its side chain. The pyrroline rings differ slightly with respect to the position of the NO group, which in both cases are sterically shielded by the surrounding methyl groups. The crystal structure of the title compound represents the first example of a 2,2,5,5‐tetramethyl‐1‐oxyl‐Δ3‐pyrroline derivative with a side chain at the double bond which is linked to it through an sp3‐hybridized C atom. In the solid state, the side chain adopts a conformation with the methyl group above/below the pyrroline ring and a H atom directed towards a C atom of the double bond. The disordered side chain of molecule 2 represents a second conformation with low potential energy. Both molecules exhibit planar chirality, but in the solid state both pairs of stereoisomers are present. These four stereoisomers are stacked one behind the other in four different columns, denoted A, A′, B and B′, the angle between the vectors of the N—O bonds in columns A and B being 80.38 (8)°.  相似文献   

19.
This study describes chirality‐ or template‐mediated helical induction in achiral β‐peptides for the first time. A strategy of end capping β‐peptides derived from β‐hGly (the smallest achiral β‐amino acid) with a chiral β‐amino acid that possesses a carbohydrate side chain (β‐Caa; C‐linked carbo β‐amino acid) or a small, robust helical template derived from β‐Caas, was adopted to investigate folding propensity. A single chiral (R)‐β‐Caa residue at the C‐ or N‐terminus in these oligomers led to a preponderance of right‐handed 12/10‐helical folds, which was reiterated more strongly in peptides capped at both the C‐ and N‐terminus. Likewise, the presence of a template (a 12/10‐helical trimer) at both the C‐ and N‐terminus resulted in a very robust helix. The propagation of the helical fold and its sustenance was found in a homo‐oligomeric sequence with as many as seven β‐hGly residues. In both cases, the induction of helicity was stronger from the N terminus, whereas an anchor at the C terminus resulted in reduced helical propensity. Although these oligomers have been theoretically predicted to favor a 12/10‐mixed helix in apolar solvents, this study provides the first experimental evidence for their existence. Diastereotopicity was found in both the methylene groups of the β‐hGly moieties due to chirality. Additionally, the β‐hGly units have shown split behavior in the conformational space to accommodate the 12/10‐helix. Thus, end capping to assist chiralty‐ or template‐mediated helical induction and stabilization in achiral β‐peptides is a very attractive strategy.  相似文献   

20.
The preparation and crystal structure of the title compound, cis‐di­chloro­[6,9‐dioxa‐3,12‐di­thia­bi­cyclo­[12.4.0]­octadeca‐14,‐16,­18(1)‐tri­ene‐S,S′]­palladium(II), [PdCl2(C14H20O2S2)], are described. The Pd atom has a square‐planar environment, coordinated to two S atoms of the di­thia­dioxa macrocycle and to two Cl? ions. The non‐coordinating O atoms are oriented away from the metal coordination plane. Upon complexation, a bicyclic chelate structure, which consists of a seven‐ and an eleven‐membered ring, is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号