首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 711 毫秒
1.
The aim of the present study was to determine the influence of the winemaking process on the antioxidant potential and content of phenolic compounds and L-ascorbic acid in wines from the fruits of Rosa rugosa. The results obtained in this study clearly indicate that the fruits of the Rosa rugosa are a desirable raw material for the production of fruit wine. The parameters of the technological process of producing wines from rose fruits had a diversified influence on the tested quality characteristics. Aged wines contained phenolics levels of 473–958 mg/100 mL GAE. The final concentrations of ascorbic acid ranged from 61 to 155 mg/100 mL for the different variants of the wine. Wines revealed high antioxidant activity in assay with DPPH. On the basis of the obtained results, it can be assumed that all the applied variants of the winemaking process are suitable for rose fruit wine. Each variant ensured at least the stability of the antioxidant capacity.  相似文献   

2.
A comprehensive chemical profiling of 1,1,1,2-tetrafluoroethane (freon R134a) subcritical extracts from the main genotypes of oil-bearing roses, was performed by gas chromatography–mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID) in order to reveal the differences in their chemical composition. One hundred and three individual compounds were identified using GC/MS and their quantitative content was determined using GC-FID, representing 89.8, 92.5, 89.7 and 93.7% of the total content of Rosa gallica L., Rosa damascena Mill., Rosa alba L. and Rosa centifolia L. extracts, respectively. The compounds found in the extracts are representatives of the following main chemical classes: mono-, sesqui- and triterpenoids, phenylethanoids and phenylpropanoids and aliphatic hydrocarbons. Fatty acids, esters and waxes were found, as well. The study revealed that 2-phenylethanol is the most abundant component, ranging 9.0–60.9% followed by nonadecane and nonadecene with 5.1–18.0% geraniol (2.9–14.4%), heneicosane (3.1–11.8%), tricosane (0.1–8.6%), nerol (1.3–6.1%) and citronellol (1.7–5.3%). The extracts demonstrate a specific chemical profile, depending on the botanical species—phenylethanoids and phenyl propanoids are the main group for R. damascena, aliphatic hydrocarbons for R. alba and R. centifolia, while both are found in almost equal amounts in R. gallica. The terpenoid compounds show relatively broad variations: monoterpenes—11.9–25.5% with maximum in R. centifolia; sesquiterpenes—0.6–7.0% with maximum in R. gallica and triterpenes—0.4–3.7% with maximum in R. gallica extract.  相似文献   

3.
Candida albicans is the most commonly implicated agent in invasive human fungal infections. The disease could be presented as minimal symptomatic candidemia or can be fulminant sepsis. Candidemia is associated with a high rate of mortality and high healthcare and hospitalization costs. The surveillance programs have reported the distribution of other Candida species reflecting the trends and antifungal susceptibilities. Previous studies have demonstrated that C. glabrata more frequently presents fluconazole-resistant strains. Extracts from Mexican plants have been reported with activity against pulmonary mycosis, among them Colubrina greggii. In the present study, extracts from the aerial parts (leaves, flowers, and fruits) of this plant were evaluated against clinical isolates of several species of Candida (C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis) by the broth microdilution assay. Through bioassay-guided fractionation, three antifungal glycosylated flavonoids were isolated and characterized. The isolated compounds showed antifungal activity only against C. glabrata resistant to fluconazole, and were non-toxic toward brine shrimp lethality bioassay and in vitro Vero cell line assay. The ethyl acetate and butanol extracts, as well as the fractions containing the mixture of flavonoids, were more active against Candida spp.  相似文献   

4.
The present study analyzes the complex of bioactive compounds from rose hips pulp powder (RHP) obtained after separating the seeds from Rosa canina L. in order to obtain the oil. The extract prepared from RHP was characterized in terms of the total content of polyphenols, flavonoids, cinnamic acids, flavonols, carotenoids, but also the content of individual polyphenols and carotenoids, antioxidant activity, and CIELab color parameters. The effects of some salts, potentially present in foods, and pH variations were examined to predict possible interactions that could occur when adding rosehip pulp as a food component. The results turned out to be a high content of polyphenols, carotenoids and antioxidant activity. The main phenolic components are procyanidin B1, chlorogenic acid, epicatechin, procyanidin B2, gallic acid, salicylic acid, and catechin. The carotenoid complex includes all-trans-β-carotene, all-trans-lycopene, zeaxanthin, α-cryptoxanthin, β-cryptoxanthin, rubixanthin, cis-β-carotene, cis-γ-carotene and cis-lycopene. The addition of CaCl2 and NaCl to the RHP extract reduced the antioxidant activity and the strong acidic environment (pH to 2.5) decreased the antioxidant activity by 29%. The addition of rose hip powder to gingerbread has improved its general characteristics, and increased its antioxidant activity and microbiological stability, the effects of 4% RHP being the most important.  相似文献   

5.
Numerous species of Allium genus have been used in the traditional medicine based on their vast biological effects, e.g., antimicrobial, digestion stimulant, anti-sclerotic, soothing, antiradical or wound healing properties. In this work, unpolar and polar extracts from two lesser-investigated species of Allium growing in Kazakhstan, Allium galanthum Kar. & Kir. (AG) and A. turkestanicum Regel. (AT), were studied for their composition and biological effects. In the HPLC-ESI-QTOF-MS/MS analyses of water and alcoholic extracts simple organic acids, flavonoids and their glycosides were found to be the best represented group of secondary metabolites. On the other hand, in the GC-MS analysis diethyl ether, extracts were found to be rich sources of straight-chain hydrocarbons and their alcohols, fatty acids and sterols. The antimicrobial activity assessment showed a lower activity of polar extracts, however, the diethyl ether extract from AT bulbs and AG chives showed the strongest activity against Bacillus subtilis ATCC 6633, B. cereus ATCC 10876, some species of Staphylococcus (S. aureus ATCC 25923 and S. epidermidis ATCC 12228) and all tested Candida species (Candida albicans ATCC 2091, Candida albicans ATCC 10231, Candida glabrata ATCC 90030, Candida krusei ATCC 14243 and Candida parapsilosis ATCC 22019) with a minimum inhibitory concentration of 0.125–0.5 mg/mL. The highest antiradical capacity exhibited diethyl ether extracts from AG bulbs (IC50 = 19274.78 ± 92.11 mg Trolox eq/g of dried extract) in DPPH assay. In ABTS scavenging assay, the highest value of mg Trolox equivalents, 50.85 ± 2.90 was calculated for diethyl ether extract from AT bulbs. The same extract showed the highest inhibition of mushroom tyrosinase (82.65 ± 1.28% of enzyme activity), whereas AG bulb ether extract was the most efficient murine tyrosinase inhibitor (54% of the enzyme activity). The performed tests confirm possible cosmeceutical applications of these plants.  相似文献   

6.
Rosa gallica var. aegyptiaca is a species of flowering plant belonging to the Rosaceae family that plays an important role as a therapeutic agent for the treatment of specific types of cancer, microbial infections, and diabetes mellitus. This work presents the first report on the evaluation of the antioxidant and antimicrobial potential along with the phytochemical analysis of Rosa gallica var. aegyptiaca leaves. Five leaf extracts of hexane, chloroform, methanol, hydromethanol 80%, and water were prepared. Assessment of antioxidant activity was carried out via DPPH radical scavenging assay. Antimicrobial activity against five foodborne pathogenic bacteria—including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis—and the fungus Candida albicans, was examined using the disc diffusion method. Total phenolic content and total flavonoid content were determined using the Folin–Ciocalteu reagent and aluminum chloride methods, respectively. Isolation, identification, and quantification of phenolic compounds were performed using HPLC-DAD analysis. Amongst the five leaf extracts that were investigated, hydromethanol 80% extract possessed the highest extraction yield, antioxidant activity, total phenolic content, and antimicrobial activity against all tested microbial strains. Moreover, this extract furnished six active phenolic compounds: gallic acid (1), (+) catechin (2), chlorogenic acid (3), (–) epicatechin (4), quercetin-3-O-α-d-(glucopyranoside) (5), and quercetin (6). This study provides an alternative utilization of R. gallica var. aegyptiaca leaves as a readily accessible source of natural antioxidants and antimicrobials in the food and pharmaceutical industries.  相似文献   

7.
The aim of our study was the two-stage synthesis of 1,3,4-oxadiazole derivatives. The first step was the synthesis of hydrazide–hydrazones from 3-methyl-4-nitrobenzhydrazide and the corresponding substituted aromatic aldehydes. Then, the synthesized hydrazide–hydrazones were cyclized with acetic anhydride to obtain new 3-acetyl-2,3-disubstituted-1,3,4-oxadiazolines. All of obtained compounds were tested in in vitro assays to establish their potential antimicrobial activity and cytotoxicity. Our results indicated that few of the newly synthesized compounds had some antimicrobial activity, mainly compounds 20 and 37 towards all used reference bacterial strains (except Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa) and fungi. These substances showed a strong or powerful bactericidal effect, especially against Staphylococcus spp. belonging to Gram-positive bacteria. Compound 37 was active against Staphylococcus epidermidis at minimal inhibitory concentration (MIC) = 0.48 µg/mL and was characterized by low cytotoxicity. This compound possessed quinolin-4-yl substituent in the second position of 1,3,4-oxadiazole ring and 3-methyl-4-nitrophenyl in position 5. High effectiveness and safety of these derivatives make them promising candidates as antimicrobial agents. Whereas the compound 20 with the 5-iodofurane substituent in position 2 of the 1,3,4-oxadiazole ring showed the greatest activity against S. epidermidis at MIC = 1.95 µg/mL.  相似文献   

8.
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.  相似文献   

9.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   

10.
Melanoma is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3). The cytotoxicity of these extracts was not previously tested on these melanoma cell lines. Determination of alkaloid contents was performed by HPLC-DAD using Polar RP column and mobile phase containing acetonitrile, water, and 1-butyl-3-methylimidazolium tetrafluoroborate. The cytotoxicity of alkaloid standards was investigated by determination of cell viability and calculation of IC50 values. Significant differences were observed in the alkaloids content and cytotoxic activity of the extracts, depending on the season of collection of the plant material. In the Sanguinaria canadensis extracts high contents of sanguinarine (from 4.8543 to 9.5899 mg/g of dry plant material) and chelerythrine (from 42.7224 to 6.8722 mg/g of dry plant material) were found. For both of these alkaloids, very high cytotoxic activity against the tested cell lines were observed. The IC50 values were in the range of 0.11–0.54 µg/mL for sanguinarine and 0.14 to 0.46 µg/mL for chelerythrine. IC50 values obtained for Sanguinaria canadensis extracts against all tested cell lines were also very low (from 0.88 to 10.96 µg/mL). Cytotoxic activity of alkaloid standards and Sanguinaria canadensis extracts were compared with the cytotoxicity of anticancer drugs—etoposide, cisplatin, and hydroxyurea. In all cases except the one obtained for cisplatin against A375, which was similar to that obtained for Sanguinaria canadensis after flowering against the same cell line, IC50 values obtained for anticancer drugs were higher than the IC50 values obtained for sanguinarine, chelerythrine, and Sanguinaria canadensis extracts. Our results showed that Sanguinaria canadensis extracts and isoquinoline alkaloids, especially sanguinarine and chelerythrine, could be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of human melanomas.  相似文献   

11.
Croton hirtus L’Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents—namely, water, methanol, dichloromethane, and ethyl acetate—and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.  相似文献   

12.
Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.  相似文献   

13.
There is increasing interest in research into fruits as sources of secondary metabolites because of their potential bioactivities. In this study, the phenolic profiles of Malus domestica Anna and Jonagold cultivars from Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry (HRMS) using a quadrupole-time-of-flight analyzer (UPLC-QTOF-ESI MS), on enriched-phenolic extracts from skins and flesh, obtained through Pressurized Liquid Extraction (PLE). In total, 48 different phenolic compounds were identified in the skin and flesh extracts, comprising 17 flavan-3-ols, 12 flavonoids, 4 chalcones, 1 glycosylated isoprenoid and 14 hydroxycinnamic acids and derivatives. Among extracts, the flesh of Jonagold exhibits a larger number of polyphenols and is especially rich in procyanidin trimers, tetramers and pentamers. Evaluating total phenolic content (TPC) and antioxidant activities using ORAC and DPPH procedures yields higher values for this extract (608.8 mg GAE/g extract; 14.80 mmol TE/g extract and IC50 = 3.96 µg/mL, respectively). In addition, cytotoxicity evaluated against SW620 colon cancer cell lines and AGS gastric cancer cell lines also delivered better effects for Jonagold flesh (IC50 = 62.4 and 60.0 µg/mL, respectively). In addition, a significant negative correlation (p < 0.05) was found between TPC and cytotoxicity values against SW620 and AGS adenocarcinoma (r = −0.908, and −0.902, respectively). Furthermore, a significant negative correlation (p < 0.05) was also found between the number of procyanidins and both antioxidant activities and cytotoxicity towards SW620 (r = −0.978) and AGS (r = −0.894) cell lines. These results align with Jonagold flesh exhibiting the highest abundance in procyanidin oligomers and yielding better cytotoxic and antioxidant results. In sum, our findings suggest the need for further studies on these Costa Rican apple extracts—and particularly on the extracts from Jonagold flesh—to increase the knowledge on their potential benefits for health.  相似文献   

14.
The aim of this paper was to determine the effect of the hydrolysis method on the amounts of phenolic compounds in the plant material in soil and, as a consequence, on the parameters to determine the degree of lignins transformation in soils. The study included the plant material (hay, sward, and roots) and soil—Albic Brunic Arenosol (horizon A, AE, and Bsv) samples. Phenolic compounds were isolated at two stages by applying acid hydrolysis followed by alkaline re-hydrolysis. The quantitative and qualitative analysis of phenolic compounds was performed with high-performance liquid chromatography with a DAD. The content of phenolic compounds in the extracts depended on the hydrolysis method and it was determined by the type of the research material. The amounts of phenolic compounds contained in the alkaline hydrolysates accounted for 55.7% (soil, horizon Bsv)—454% (roots) of their content in acid hydrolysates. In the extracts from acid hydrolysates, chlorogenic and p-hydroxybenzoic acids were dominant. In the alkaline extracts from the plant material, the highest content was recorded for p-coumaric and ferulic acids, and in the extracts from soil, ferulic and chlorogenic acids. A combination of acid and alkaline hydrolysis ensures the best extraction efficiency of insoluble-bound forms of polyphenols from plant and soil material.  相似文献   

15.
Walnut green husk (WGH) is a waste generated by the walnut (Juglans regia L.) harvest industry. It represents a natural source of polyphenols, compounds with antioxidant and antimicrobial activities, but their activity could be dependent on the ripeness stage of the raw material. In this study, the effect of the different ripeness stages—open (OH) and closed (CH) husks—on the antioxidant and antimicrobial properties of WGH extracts were analyzed, emphasizing the influence of the extracts in inhibiting Escherichia coli growth. The ripeness stage of WGH significantly affected the antioxidant activity of the extracts. This was attributed to the different polyphenol profiles related to the mechanical stress when the husk opened compared to the closed sample. The antimicrobial activity showed inhibition of E. coli growth. OH-extracts at 96 µg/mL caused the lowest specific growth rate (µmax = 0.003 h−1) and the greatest inhibition percentage (I = 93%) compared to CH-extract (µmax = 0.01 h−1; I = 69%). The obtained results showed the potential of the walnut green husk, principally open husk, as an economical source of antioxidant and antimicrobial agents with potential use in the food industry.  相似文献   

16.
Worldwide, mushrooms belonging to the Pleurotus spp. such as P. citrinopileatus, P. djamor, and P. pulmonarius are highly valued not only for their taste and aroma but also for their health-promoting properties. These species are rich in bioelements, vitamins, and above all, compounds that exhibit immunostimulatory activity. Therefore, in this study, we aimed to determine the effect of the supplementation of culture media using inorganic Mg and Zn salts. This is the first study to establish the bioavailability of the selected elements (Mg and Zn) and anions (Cl, SO42−) from the enriched biomass by means of the extraction of lyophilized mycelium into artificial digestive juices. The following salts were added to the liquid Oddoux medium: ZnSO4·7H2O, ZnCl2, MgSO4·7H2O or MgCl2·6H2O. The bioelements, anions and organic compounds in the obtained biomass were determined. The addition of Zn and Mg salts to the media increased the production of biomass by 30% and increased the bioaccumulation of the inorganic salts. Maintaining in vitro cultures under optimized and controlled conditions produced mycelium with a better composition and health properties than otherwise. Such enriched biomass may be classified as potential functional foods, aiding in overcoming deficiencies of elements and organic compounds with biological activity in humans.  相似文献   

17.
Summary Standards of the polyphenols occurring in wood, bark and leaf extracts ofEucalyptus spp. (i.e. flavonoids and phenolic acids and aldehydes) have been analyzed by HPLC using reversed phase columns, gradient elution and diode-array detection. The conditions used are reported.  相似文献   

18.
The chemical composition, antioxidant activity, and antimicrobial properties of three commercially available essential oils: rosemary (REO), lavender (LEO), and mint (MEO), were determined in the current study. Our data revealed that the major components of REO, MEO, and LEO were 1,8-cineole (40.4%), menthol (40.1%), and linalool acetate (35.0%), respectively. The highest DPPH radical-scavenging activity was identified in MEO (36.85 ± 0.49%) among the investigated EOs. Regarding antimicrobial activities, we found that LEO had the strongest inhibitory efficiencies against the growth of Pseudomonas aeruginosa and Candida (C.) tropicalis, MEO against Salmonella (S.) enterica, and REO against Staphylococcus (S.) aureus. The strongest antifungal activity was displayed by mint EO, which totally inhibited the growth of Penicillium (P.) expansum and P. crustosum in all concentrations; the growth of P. citrinum was completely suppressed only by the lowest MEO concentration. The lowest minimal inhibitory concentrations (MICs) against S. enterica, S. aureus, and C. krusei were assessed for MEO. In situ analysis on the bread model showed that 125 µL/L of REO exhibited the lowest mycelial growth inhibition (MGI) of P. citrinum, and 500 µL/L of MEO caused the highest MGI of P. crustosum. Our results allow us to make conclusion that the analysed EOs have promising potential for use as innovative agents in the storage of bakery products in order to extend their shelf-life.  相似文献   

19.
Rosa canina L. (dog rose) is a rich source of phenolic compounds that offer great hope for the prevention of chronic human diseases. Herein, wild and commercial samples of dog rose were chemically characterized with respect to their phenolic composition by liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI/MS). Furthermore, in vitro antioxidant properties and antibacterial activity of dog rose fruits and leaves hydromethanolic extracts and infusions were also evaluated. The results revealed that wild and commercial fruits of dog rose are similar in terms of l(+)-ascorbic acid, total phenolics (TPC), total flavonoids (TFC) and total phenolic acids (TPAC) content, individual phenolic constituents and antioxidant activity. Moreover, the fruits had lower levels of phenolic compounds and also revealed lower biological activity than the leaves. On the other hands, the highest content of TPC, TFC, TPAC, individual phenolic constituents, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and FRAP (ferric reducing antioxidant power) were found in the leaf’s infusions. They were also the only ones to show antibacterial activity. Overall, these finding confirmed usefulness of R. canina L. leaves and fruits as a rich source of bioactive phenolic compounds with potential use in food, pharmaceutical, and cosmetic industries.  相似文献   

20.
We measured and studied the growth parameters and the qualitative and quantitative composition of the flavones of hairy roots of the Scutellaria genus: S. lateriflora, S. przewalskii and S. pycnoclada. Hairy roots were obtained using wild-type Agrobacterium rhizogenes A4 by co-cultivation of explants (cotyledons) in a suspension of Agrobacterium. The presence of the rol-genes was confirmed by PCR analysis. The hairy roots of the most studied plant from the Scutellaria genus, S. baicalensis, were obtained earlier and used as a reference sample. HPLC-MS showed the predominance of four main flavones (baicalin, baicalein, wogonin and wogonoside) in the methanol extracts of the studied hairy roots. In addition to the four main flavones, the other substances which are typical to the aerial part of plants were found in all the extracts: apigenin, apigetrin, scutellarin and chrysin-7-O-β-d-glucuronide. According to the total content of flavones, the hairy roots of the studied skullcaps form the following series: S. przewalskii (33 mg/g dry weight) > S. baicalensis (17.04 mg/g dry weight) > S. pycnoclada (12.9 mg/g dry weight) > S. lateriflora (4.57 mg/g dry weight). Therefore, the most promising producer of anti-coronavirus flavones is S. przewalskii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号