首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Photoresponsive gold nanoparticle networks were prepared by functionalizing them with azobenzene derivatives. A network can be formed when a linker molecule constituting the azobenzene moiety suitably derivatized on either side with gold surface sensitive groups such as thiols and amines is added to the nanoparticle solution. It is shown that the interparticle spacing in the networks could be controlled by the reversible trans-cis isomerization of the azobenzene moiety induced by UV and visible light, respectively. The photoinduced variation in the interparticle spacings is inferred by the changes in the optical spectra of the gold nanoparticles which display a red or blue shift in the surface plasmon resonance peak depending on a decrease or increase in the interparticle spacing, respectively. Transmission electron microscopy images are in consonance with the evidence from the optical spectra.  相似文献   

2.
We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.  相似文献   

3.
We developed three types of film-type stimuli-responsive polymers based on aza-substituted conjugated polymers involving azobenzene, N_bith, N_fluo and Schiff base moieties, C_bith. All polymer films showed bathochromic shifts in absorption spectra followed by chromic behaviors by fuming trifluoroacetic acid (TFA). In particular, we disclosed that there were three significant differences on acid detecting ability between azobenzene and Schiff base derivatives in terms of absorption wavelengths, stability, and proton holding time. The azobenzene polymers exhibited real-time responses toward vapor fuming, meanwhile write and erase chromic behaviors were reversibly accomplished with the Schiff base polymer by exposing to acid and amine vapor. Theoretical calculation revealed that red-shifted absorption bands should be induced by protonation on nitrogen atoms in the aza-substituted positions. Diverse responses through dynamic regulation of electronic properties of main-chain conjugation can be accomplished by introducing the aza-substituents in polymers.  相似文献   

4.
Photo‐chemically tunable photonic band gap materials are prepared by infiltration of liquid crystal polymers having azobenzene groups into voids of SiO2 inverse opal films. Linearly polarized (LP) light irradiation results in transformation from a random to an anisotropic molecular orientation of azobenzene side chains in the voids of the SiO2 inverse opal film, leading to the reversible and stable shift of the reflection peak to longer wavelength more than 15 nm. To improve switching properties, we use copolymers of azobenzene monomer and tolane monomer, which have higher birefringence, as infiltration materials into the voids. The azobenzene‐tolane copolymers are found to show higher birefringence than azobenzene homopolymers by the LP light irradiation at higher temperature. Consequently, the reflection band of the SiO2 inverse opal film infiltrated with the azobenzene‐tolane copolymer can be shifted to longer wavelength region more than 55 nm by the irradiation of LP light. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1981–1990, 2009  相似文献   

5.
Self-assembled monolayers of azobenzene-containing thiols on smooth Au(1 1 1) surfaces were studied by gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS). By adsorption of colloidal Au nanoparticles on top of the organic adlayer highly reproducible spectra with strongly enhanced intensities are obtained. The observed bands indicate a trans conformation of the azobenzene moieties and are in agreement with structural data for the molecular layer. A characteristic dependency on the terminal and the spacer groups of the molecules is found. Samples prepared during illumination with UV light show pronounced spectral differences that can be attributed to azobenzene in cis conformation.  相似文献   

6.
Site-specific modification of thiol-containing biomolecules has been recognized as a versatile and powerful strategy for probing our biological systems and discovering novel therapeutics. The addition of lipophilic silicon moiety opens up new avenues for multi-disciplinary research with broad applications in both the medicinal and material sciences. However, adhering to the strict biocompatibility requirements, and achieving the introduction of labile silicon handle and high chemo-selectivity have been formidable. In this paper, we report silicon-based conjugating reagents including β-trialkylsilyl and silyl ether-tethered alkynones that selectively react with thiols under physiological conditions. The pH-neutral, metal-free and additive-free reaction yields stable products with broad substrate compatibility and full retention of silicon handles in most cases. Besides simple aliphatic and aromatic thiols, this approach is applicable in the labeling of thiols present in proteins, sugars and payloads, thereby expanding the toolbox of thiol conjugation.  相似文献   

7.
Azobenzene elastomers have been extensively explored in the last decade as photo-deformable smart materials which are able to transform light energy into mechanical stress. Presently, there is a great need for theoretical approaches to accurately predict the quantitative response of these materials based on their microscopic structure. Recently, we proposed a theory of light-induced deformation of azobenzene elastomers using a simple regular cubic network model [V. Toshchevikov, M. Saphiannikova, and G. Heinrich, J. Phys. Chem. B 116, 913 (2012)]. In the present study, we extend the previous theory using more realistic network models which take into account the random orientation of end-to-end vectors of network strands as well as the molecular weight distribution of the strands. Interaction of the chromophores with the linearly polarized light is described by an effective orientation potential which orients the chromophores perpendicular to the polarization direction. We show that both monodisperse and polydisperse azobenzene elastomers can demonstrate either a uniaxial expansion or contraction along the polarization direction. The sign of deformation (expansion/contraction) depends on the orientation distribution of chromophores with respect to the main chains which is defined by the chemical structure and by the lengths of spacers. The degree of cross-linking and the polydispersity of network strands do not affect the sign of deformation but influence the magnitude of light-induced deformation. We demonstrate that photo-mechanical properties of mono- and poly-disperse azobenzene elastomers with random spatial distribution of network strands can be described in a very good approximation by a regular cubic network model with an appropriately chosen length of the strands.  相似文献   

8.
In this report we present a new chemical probe, 3-HTC, that can reversibly and ratiometrically measure the thiol-disulfide equilibrium of biological systems. 3-HTC is composed of a coumarin that has a thiolate directly conjugated to its extended aromatic π system while formation of a disulfide attenuates this conjugation. The fluorescence and absorption properties of 3-HTC are therefore very sensitive to the redox state of its thiol. 3-HTC reacts reversibly with thiols and disulfides enabling its use to measure dynamic GSH/GSSH ratios in vitro as well as to monitor the reversible redox status of whole cell lysates.  相似文献   

9.
[reaction: see text] We report a mild, palladium-free synthetic protocol for the cross-coupling reaction of aryl iodides and thiols using 10 mol % CuI and 10 mol % neocuproine, with NaOt-Bu as the base, in toluene at 110 degrees C. Using this protocol, we have shown that a variety of aryl sulfides can be synthesized in excellent yields from readily available iodides and thiols.  相似文献   

10.
Photoresponsive hydrogels with high performance are of considerable interest because of their wide application. In this paper, a kind of smart poly (vinyl alcohol) (PVA) hydrogel is obtained using 4, 4′-azodibenzoic acid as cross-link agent. The hydrogels have the ability of swelling and shrinking reversibly under irradiation by ultraviolet or visible light because azobenzene groups show trans–cis isomerization under suitable light wavenumber. Under UV irradiation, azobenzene takes the cis structure which leads to volume decreases; macroscopically, shrinking can be observed. Under visible light irradiation, the volume recovers, and swelling can be observed macroscopically. Hydrogels have excellent swelling/shrinking recovery properties even after 12 cycles. The procedure achieves loop control of the transformation from light energy to mechanical energy.  相似文献   

11.
Azobenzene undergoes trans→cis isomerization when irradiated with light tuned to an appropriate wavelength. The reverse cis→trans isomerization can be driven by light or occurs thermally in the dark. Azobenzene's photochromatic properties make it an ideal component of numerous molecular devices and functional materials. Despite the abundance of application-driven research, azobenzene photochemistry and the isomerization mechanism remain topics of investigation. Additional substituents on the azobenzene ring system change the spectroscopic properties and isomerization mechanism. This critical review details the studies completed to date on the 3 main classes of azobenzene derivatives. Understanding the differences in photochemistry, which originate from substitution, is imperative in exploiting azobenzene in the desired applications.  相似文献   

12.
We have carried out an experimental and computational study on the ground- and excited-state photochemical and photophysical properties of (1-cyclohexenyl)phenyldiazene (CPD), a species formally derived from azobenzene in which one of the phenyl rings is replaced by a 1-cyclohexene substituent. The results show that CPD does substantially behave like azobenzene, but with a higher (approximately 70%) Phi(Z-->E) (npi*) photoisomerization quantum yield, calling for CPD as an effective alternative of azobenzene itself with new functionalization possibilities. By use of state-of-the-art ab initio CASPT2//CASSCF minimum energy path computations, we have identified the most efficient decay and isomerization routes of the absorbing singlet (pipi*), S1 (npi*), T1, and S0 states of CPD. The resulting mechanistic scheme agrees with experimental findings and provides a rationale of the observed photoisomerization quantum yields. Furthermore, this study provides a deep insight on the photophysical and photochemical properties of compounds based on the -N=N- double bond which supplies a general model for the photoreactivity of azobenzene-type compounds in general. This is expected to be a useful guideline for the design of novel photoreactive azo compounds.  相似文献   

13.
We described the use of block copolymer micelles as building blocks for the incorporation of water-insoluble photochromic species of azobenzene and the fabrication of multilayer films by alternating the deposition of the block copolymer micelles of poly(styrene-b-acrylic acid), incorporating azobenzene and poly(diallyl-dimethylammonium chloride). The azobenzene incorporated into the block copolymer micelles can undergo a reversible photoisomerization under the irradiation of UV and visible light sources. An interesting finding is that the photoisomerization of the azobenzene in the multilayer film is faster than it is in its normal solid film, but very similar to that in its diluted solution. Furthermore, the amount of azobenzene incorporated into the micelles can influence the photoisomerization rates in the films. Therefore, we expect that the block copolymer micelles may provide a proper microenvironment for the photoisomerization of azobenzene and the as-prepared polyelectrolyte/block copolymer micelle thin films will be useful for photoswitching materials.  相似文献   

14.
We report an efficient, mild and convenient synthetic protocol for the C–S cross-coupling reaction of various aryl, benzyl, allyl chlorides and thiols using 5 mol % Nickel–Schiff base catalyst with NaOH as the base, in DMF at 70 °C. Using this protocol, we have shown that a variety of aryl sulfides can be synthesized in excellent yields from readily available organic chlorides and thiols.  相似文献   

15.
Photocontrollable self-assembly   总被引:3,自引:0,他引:3  
The incorporation of photoswitching molecules into molecular building blocks creates the possibility of photoresponsive self-assemblies in which the self-assembled architecture or self-assembling process can be controlled by external light stimulus. Among the photoswitching molecules, azobenzene has been used most widely by virtue of the large photoinduced changes in its molecular geometry and physical properties. This article reviews how azobenzene can be effectively used to construct the self-assemblies in which supramolecular structure and formation/dissociation can be altered by light.  相似文献   

16.
采用量子化学HF方法在6-31G水平上优化6个甲氧基苯基偶氮衍生物分子的几何构型,利用HF/6-31G。方法计算它们的偶极矩、电荷分布、前线分子轨道能级并结合有限场(FF)方法计算二阶非线性光学系数.结果表明,偶氮苯衍生物分子具有很好的共轭性,在给吸电子基团作用下,电荷转移明显,展现示出较强的极性.偶氮苯衍生物分子与苯乙烯、Schiff碱类衍生物相似,也具有很好二阶非线性光学活性,同时六元杂环取代的偶氮苯衍生物分子二阶非线性光学系数比未取代的大,五元杂环取代结果相反.  相似文献   

17.
We report a mild, convenient, environmentally friendly, and ligand-free synthetic protocol for the cross-coupling reaction of aryl iodides and thiols using 10 mol % CuI with KF/Al2O3 as the base, in DMF at 110 °C. Using this protocol, we have shown that a variety of aryl sulfides can be synthesized in excellent yields from readily available iodides and thiols.  相似文献   

18.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans - cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

19.
The rise of antibiotic resistance causes a serious health care problem, and its counterfeit demands novel, innovative concepts. The combination of photopharmacology, enabling a light-controlled reversible modulation of drug activity, with antibiotic drug design has led to first photoswitchable antibiotic compounds derived from established scaffolds. In this study, we converted cystobactamids, gyrase-inhibiting natural products with an oligoaryl scaffold and highly potent antibacterial activities, into photoswitchable agents by inserting azobenzene in the N-terminal part and/or an acylhydrazone moiety near the C-terminus, yielding twenty analogs that contain mono- as well as double-switches. Antibiotic and gyrase inhibition properties could be modulated 3.4-fold and 5-fold by light, respectively. Notably, the sensitivity of photoswitchable cystobactamids towards two known resistance factors, the peptidase AlbD and the scavenger protein AlbA, was light-dependent. While irradiation of an analog with an N-terminal azobenzene with 365 nm light led to less degradation by AlbD, the AlbA-mediated inactivation was induced. This provides a proof-of-principle that resistance towards photoswitchable antibiotics can be optically controlled.  相似文献   

20.
We have synthesized azobenzene-based molecules containing either one or two chiral groups. A cholesteric phase can be induced by adding the chiral azobenzene compounds to a host nematic liquid crystal. We investigated the effects of the trans-cis photoisomerization of the chiral azobenzene compounds on the properties of the cholesteric phase, such as the helical pitch length. This can be increased or decreased by the photoisomerization of the chiral azobenzene compounds. We discuss the photochemically driven change in the helical pitch of the cholesteric phase with respect to structural effects involving the chiral groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号